inst/doc/table.R

## ----global_options, include=FALSE--------------------------------------------
library(knitr)

knitr::opts_chunk$set(
  fig.width = 8, fig.height = 7, warning = FALSE,
  message = FALSE
)
knitr::opts_knit$set(root.dir = tempdir())

pkgs <- c("flextable", "broom", "report", "effectsize", "methods")
successfully_loaded <- vapply(pkgs, requireNamespace, FUN.VALUE = logical(1L), quietly = TRUE)
can_evaluate <- all(successfully_loaded)

if (can_evaluate) {
  knitr::opts_chunk$set(eval = TRUE)
  vapply(pkgs, require, FUN.VALUE = logical(1L), quietly = TRUE, character.only = TRUE)
} else {
  knitr::opts_chunk$set(eval = FALSE)
}

## -----------------------------------------------------------------------------
library(rempsyc)

## -----------------------------------------------------------------------------
pkgs <- c("flextable", "broom", "report", "effectsize")
install_if_not_installed(pkgs)

## -----------------------------------------------------------------------------
nice_table(
  mtcars[1:3, ],
  title = c("Table 1", "Motor Trend Car Road Tests"),
  note = c(
    "The data was extracted from the 1974 Motor Trend US magazine.",
    "* p < .05, ** p < .01, *** p < .001"
  )
)

## -----------------------------------------------------------------------------
# Standardize variables to get standardized coefficients
mtcars.std <- lapply(mtcars, scale)
# Create a simple linear model
model <- lm(mpg ~ cyl + wt * hp, mtcars.std)
# Gather summary statistics
stats.table <- as.data.frame(summary(model)$coefficients)
# Get the confidence interval (CI) of the regression coefficient
CI <- confint(model)
# Add a row to join the variables names and CI to the stats
stats.table <- cbind(row.names(stats.table), stats.table, CI)
# Rename the columns appropriately
names(stats.table) <- c("Term", "B", "SE", "t", "p", "CI_lower", "CI_upper")

## -----------------------------------------------------------------------------
stats.table

## -----------------------------------------------------------------------------
nice_table(stats.table)

## -----------------------------------------------------------------------------
my_table <- nice_table(stats.table)

## ----eval = FALSE-------------------------------------------------------------
#  print(my_table, preview = "docx")

## ----eval = FALSE-------------------------------------------------------------
#  flextable::save_as_docx(my_table, path = "nice_tablehere.docx")

## -----------------------------------------------------------------------------
test <- head(mtcars, 3)
names(test) <- c("dR", "N", "M", "SD", "W", "np2", "ges", "z", "r", "R2", "sr2")
test[, 10:11] <- test[, 10:11] / 10
nice_table(test)

## -----------------------------------------------------------------------------
nice_table(stats.table, highlight = TRUE)

## -----------------------------------------------------------------------------
nice_table(stats.table, highlight = .01)

## -----------------------------------------------------------------------------
nice_table(stats.table, stars = FALSE)

## -----------------------------------------------------------------------------
library(broom)
model <- lm(mpg ~ cyl + wt * hp, mtcars)
(stats.table <- tidy(model, conf.int = TRUE))
nice_table(stats.table, broom = "lm")

## -----------------------------------------------------------------------------
library(report)
model <- lm(mpg ~ cyl + wt * hp, mtcars)
(stats.table <- report_table(model))
nice_table(stats.table, report = "lm")

## -----------------------------------------------------------------------------
nice_table(stats.table, report = "lm", short = TRUE)

## -----------------------------------------------------------------------------
stats.table <- nice_t_test(
  data = mtcars,
  response = c("mpg", "disp", "drat"),
  group = "am",
  warning = FALSE
)
stats.table

nice_table(stats.table)

## -----------------------------------------------------------------------------
stats.table <- nice_mod(
  data = mtcars,
  response = "mpg",
  predictor = "gear",
  moderator = "wt"
)
stats.table

nice_table(stats.table)

## -----------------------------------------------------------------------------
nice_table(test[8:11], col.format.p = 1:4)

## -----------------------------------------------------------------------------
nice_table(test[8:11], col.format.r = 1:4)

## -----------------------------------------------------------------------------
fun <- function(x) {
  x + 11.1
}

nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")

fun <- function(x) {
  paste("×", x)
}

nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")

fun <- function(x) {
  formatC(x, format = "f", digits = 0)
}

nice_table(test[3:6], col.format.custom = 1:4, format.custom = "fun")

fun <- function(x) {
  formatC(x, format = "f", digits = 5)
}

nice_table(test[3:6], col.format.custom = 1:4, format.custom = "fun")

## -----------------------------------------------------------------------------
library(dplyr)
library(flextable)
my_table %>%
  italic(j = 1, part = "body") %>%
  bg(bg = "gray", part = "header") %>%
  color(color = "blue", part = "header") %>%
  color(~ t > -3.5, ~ t + SE, color = "red") %>%
  bold(~ t > -3.5, ~ t + p, bold = TRUE) %>%
  set_header_labels(
    Term = "Model Term",
    B = "Standardized Beta",
    p = "p-value"
  )

## -----------------------------------------------------------------------------
# Setup example dataset
data <- cbind(iris[c(5, 1:3)], iris[1:3] + 1)
names(data)[-1] <- c(
  paste0("T1.", names(data[2:4])),
  paste0("T2.", names(data[2:4]))
)

# Get descriptive statistics
library(dplyr)
descriptive.data <- data %>%
  group_by(Species) %>%
  summarize(across(T1.Sepal.Length:T2.Petal.Length,
    list(m = mean, sd = sd),
    .names = "{.col}.{.fn}"
  ))

# Rename the columns so we can merge them later
names(descriptive.data) <- c(
  "Species", rep(c("T1.M", "T1.SD"), 3),
  rep(c("T2.M", "T2.SD"), 3)
)

# Extract the data by variable and measurement time
T1.disp <- cbind(
  descriptive.data[1, 2:3],
  descriptive.data[2, 2:3],
  descriptive.data[3, 2:3]
)
T1.hp <- cbind(
  descriptive.data[1, 4:5],
  descriptive.data[2, 4:5],
  descriptive.data[3, 4:5]
)
T1.drat <- cbind(
  descriptive.data[1, 6:7],
  descriptive.data[2, 6:7],
  descriptive.data[3, 6:7]
)
T2.disp <- cbind(
  descriptive.data[1, 8:9],
  descriptive.data[2, 8:9],
  descriptive.data[3, 8:9]
)
T2.hp <- cbind(
  descriptive.data[1, 10:11],
  descriptive.data[2, 10:11],
  descriptive.data[3, 10:11]
)
T2.drat <- cbind(
  descriptive.data[1, 12:13],
  descriptive.data[2, 12:13],
  descriptive.data[3, 12:13]
)

# Combine Time 1 with Time 2
T1 <- rbind(T1.disp, T1.hp, T1.drat)
T2 <- rbind(T2.disp, T2.hp, T2.drat)
wide.data <- cbind(Variable = names(iris[1:3]), T1, T2)

# Rename variables to avoid duplicate names not allowed
names(wide.data)[-1] <- paste0(
  rep(c("T1.", "T2."), each = 6),
  rep(descriptive.data$Species, times = 2, each = 2),
  paste0(c(".M", ".SD"))
)

# Make preliminary nice_table
nice_table(wide.data)

## -----------------------------------------------------------------------------
nice_table(wide.data, separate.header = TRUE, italics = seq(wide.data))

## -----------------------------------------------------------------------------
T1.mpg <- nice_t_test(data = mtcars, response = "mpg", group = "am")
T2.mpg <- nice_t_test(data = mtcars, response = "mpg", group = "vs")
T1.disp <- nice_t_test(data = mtcars, response = "disp", group = "am")
T2.disp <- nice_t_test(data = mtcars, response = "disp", group = "vs")
names(T1.mpg)[-1] <- paste0("T1.", names(T1.mpg)[-1])
names(T2.mpg) <- paste0("T2.", names(T2.mpg))
names(T1.disp)[-1] <- paste0("T1.", names(T1.disp)[-1])
names(T2.disp) <- paste0("T2.", names(T2.disp))
T1 <- rbind(T1.mpg, T1.disp)
T2 <- rbind(T2.mpg, T2.disp)
wide.data <- cbind(T1, T2[-(1)])
nice_table(wide.data)
nice_table(wide.data, separate.header = TRUE, stars = FALSE)

## -----------------------------------------------------------------------------
names(wide.data)[-1] <- paste0(
  rep(c("Early.", "Late."), each = 6),
  names(wide.data)[-1]
)
nice_table(wide.data)
nice_table(wide.data, separate.header = TRUE, stars = FALSE)

Try the rempsyc package in your browser

Any scripts or data that you put into this service are public.

rempsyc documentation built on July 3, 2024, 5:08 p.m.