Nothing
#' Reporting Bayesian Model Comparison
#'
#' Automatically report the results of Bayesian model comparison using the `loo` package.
#'
#' @param x An object of class [brms::loo_compare].
#' @param include_IC Whether to include the information criteria (IC).
#' @param include_ENP Whether to include the effective number of parameters (ENP).
#' @param ... Additional arguments (not used for now).
#'
#' @examplesIf require("brms", quietly = TRUE)
#' \donttest{
#' library(brms)
#'
#' m1 <- brms::brm(mpg ~ qsec, data = mtcars)
#' m2 <- brms::brm(mpg ~ qsec + drat, data = mtcars)
#' m3 <- brms::brm(mpg ~ qsec + drat + wt, data = mtcars)
#'
#' x <- brms::loo_compare(
#' brms::add_criterion(m1, "loo"),
#' brms::add_criterion(m2, "loo"),
#' brms::add_criterion(m3, "loo"),
#' model_names = c("m1", "m2", "m3")
#' )
#' report(x)
#' report(x, include_IC = FALSE)
#' report(x, include_ENP = TRUE)
#' }
#'
#' @details
#' The rule of thumb is that the models are "very similar" if |elpd_diff| (the
#' absolute value of elpd_diff) is less than 4 (Sivula, Magnusson and Vehtari, 2020).
#' If superior to 4, then one can use the SE to obtain a standardized difference
#' (Z-diff) and interpret it as such, assuming that the difference is normally
#' distributed. The corresponding p-value is then calculated as `2 * pnorm(-abs(Z-diff))`.
#' However, note that if the raw ELPD difference is small (less than 4), it doesn't
#' make much sense to rely on its standardized value: it is not very useful to
#' conclude that a model is much better than another if both models make very
#' similar predictions.
#'
#' @return Objects of class [report_text()].
#' @export
report.compare.loo <- function(x, include_IC = TRUE, include_ENP = FALSE, ...) {
# nolint start
# https://stats.stackexchange.com/questions/608881/how-to-interpret-elpd-diff-of-bayesian-loo-estimate-in-bayesian-logistic-regress
# nolint end
# https://users.aalto.fi/%7Eave/CV-FAQ.html#12_What_is_the_interpretation_of_ELPD__elpd_loo__elpd_diff
# https://users.aalto.fi/%7Eave/CV-FAQ.html#se_diff
# The difference in expected log predictive density (elpd) between each model
# and the best model as well as the standard error of this difference (assuming
# the difference is approximately normal).
# The values in the first row are 0s because the models are ordered from best to worst according to their elpd.
x <- as.data.frame(x)
modnames <- rownames(x)
elpd_diff <- x[["elpd_diff"]]
se_elpd_diff <- x[["se_diff"]]
ic_diff <- -2 * elpd_diff
z_elpd_diff <- elpd_diff / se_elpd_diff
p_elpd_diff <- 2 * stats::pnorm(-abs(z_elpd_diff))
z_ic_diff <- -z_elpd_diff
if ("looic" %in% colnames(x)) {
elpd <- x[["elpd_loo"]]
enp <- x[["p_loo"]]
index_label <- "ELPD-LOO"
ic <- x[["looic"]]
index_ic <- "LOOIC"
} else {
elpd <- x[["elpd_waic"]]
enp <- x[["p_waic"]]
index_label <- "ELPD-WAIC"
ic <- x[["waic"]]
index_ic <- "WAIC"
}
# TODO: The above indices-computation and name-matching should be implemented
# in a parameters.compare.loo() function which would be run here.
# Starting text -----
text1 <- sprintf(
paste0(
"The difference in predictive accuracy, as indexed by Expected Log ",
"Predictive Density (%s), suggests that '%s' is the best model ("
),
index_label, modnames[1]
)
if (all(c(include_IC, include_ENP))) {
if (include_IC) {
text1 <- sprintf(paste0(text1, "%s = %.2f"), index_ic, ic[1])
}
if (include_ENP) {
if (include_IC) {
text1 <- sprintf(paste0(text1, ", ENP = %.2f)"), enp[1])
} else {
text1 <- sprintf(paste0(text1, "ENP = %.2f)"), enp[1])
}
} else {
text1 <- paste0(text1, ")")
}
} else {
text1 <- sprintf(paste0(text1, "ELPD = %.2f)"), elpd[1])
}
# Other models ---
text_models <- sprintf(
"'%s' (diff-ELPD = %.2f +- %.2f, %s",
modnames[-1],
elpd_diff[-1],
se_elpd_diff[-1],
insight::format_p(p_elpd_diff[-1])
)
if (all(c(include_IC, include_ENP))) {
if (include_IC) {
text_models <- sprintf(paste0(text_models, ", %s = %.2f"), index_ic, ic[-1])
}
if (include_ENP) {
if (include_IC) {
text_models <- sprintf(paste0(text_models, ", ENP = %.2f)"), enp[-1])
} else {
text_models <- sprintf(paste0(text_models, "ENP = %.2f)"), enp[-1])
}
} else {
text_models <- sprintf(paste0(text_models, ")"))
}
} else {
text_models <- paste0(text_models, ")")
}
text1 <- paste0(text1, ", followed by ", datawizard::text_concatenate(text_models))
class(text1) <- c("report_text", class(text1))
text1
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.