Nothing
#' Negative binomial Distribution
#'
#' See [stats::NegBinomial]
#'
#' Both parameters can be overridden with
#' `with_params = list(size = ..., prob = ...)`.
#'
#' @param size Number of successful trials parameter, or `NULL` as a
#' placeholder. Non-integer values > 0 are allowed.
#' @param mu Mean parameter, or `NULL` as a placeholder.
#'
#' @return A `NegativeBinomialDistribution` object.
#' @export
#'
#' @examples
#' d_nbinom <- dist_negbinomial(size = 3.5, mu = 8.75)
#' x <- d_nbinom$sample(100)
#' d_emp <- dist_empirical(x)
#'
#' plot_distributions(
#' empirical = d_emp,
#' theoretical = d_nbinom,
#' estimated = d_nbinom,
#' with_params = list(
#' estimated = inflate_params(
#' fitdistrplus::fitdist(x, distr = "nbinom")$estimate
#' )
#' ),
#' .x = 0:max(x)
#' )
#'
#' @family Distributions
dist_negbinomial <- function(size = NULL, mu = NULL) {
NegativeBinomialDistribution$new(size = size, mu = mu)
}
NegativeBinomialDistribution <- distribution_class_simple(
name = "NegativeBinomial",
fun_name = "nbinom",
type = "discrete",
params = list(
size = I_POSITIVE_REALS,
mu = I_POSITIVE_REALS
),
support = I_NATURALS,
diff_density = function(x, vars, log, params) {
res <- vars
if ("mu" %in% names(vars)) {
res$mu <- if (log) {
(x / params$mu - 1.0) * params$size / (params$size + params$mu)
} else {
(x / params$mu - 1.0) * params$size / (params$size + params$mu) *
dnbinom(x = x, size = params$size, mu = params$mu)
}
}
if ("size" %in% names(vars)) {
log_diff <- digamma(x + params$size) - digamma(params$size) +
log(params$size / (params$size + params$mu)) +
(params$mu - x) / (params$size + params$mu)
res$size <- if (log) {
log_diff
} else {
log_diff * dnbinom(x, size = params$size, mu = params$mu)
}
}
res
},
tf_logdensity = function() function(x, args) { # nolint: brace.
mu <- args[["mu"]]
size <- args[["size"]]
if (tf$rank(size) == 0L) {
# tf$stack() doesn't auto-broadcast
size <- tf$broadcast_to(size, tf$keras$backend$shape(x))
}
mu0 <- mu == K$zero
prob <- mu / (size + mu)
ok <- x >= K$zero
x_safe <- tf$where(ok, x, K$zero)
tf$where(
mu0,
tf$where(x == K$zero, K$zero, K$neg_inf),
tf$where(
ok,
size * log1p(-prob) + x_safe * log(prob) -
tf$math$lbeta(tf$stack(list(K$one + x_safe, size), axis = 1L)) - log(x_safe + size),
K$neg_inf
)
)
},
tf_logprobability = function() function(qmin, qmax, args) { # nolint: brace.
mu <- args[["mu"]]
size <- args[["size"]]
mu0 <- mu == K$zero
prob <- mu / (size + mu)
qmin0 <- qmin <= K$zero
qmax_ok <- qmax >= K$zero & tf$math$is_finite(qmax)
qmax_nok <- tf$where(qmax < K$zero, K$neg_inf, K$zero)
qmin_safe <- tf$math$maximum(K$zero, tf$math$ceil(qmin)) - K$one
qmax_safe <- tf$math$maximum(K$zero, tf$math$floor(qmax))
tf$where(
mu0,
tf$where(qmin0, qmax_nok, K$neg_inf),
tf$where(
qmin0,
tf$where(
qmax_ok,
log(tf$math$betainc(size, qmax_safe + K$one, K$one - prob)),
qmax_nok
),
tf$where(
qmax_ok,
log(tf$math$betainc(qmin_safe + K$one, size, prob) - tf$math$betainc(qmax_safe + K$one, size, prob)),
log(tf$math$betainc(qmin_safe + K$one, size, prob))
)
)
)
},
tf_is_discrete_at = function() function(x, args) { # nolint: brace.
mu <- args[["mu"]]
tf$where(
mu == K$zero,
x == K$zero,
tf_is_integerish(x) & x >= K$zero
)
}
)
#' @export
fit_dist_start.NegativeBinomialDistribution <- function(dist, obs, ...) {
obs <- as_trunc_obs(obs)
x <- .get_init_x(obs, .min = 0L)
res <- dist$get_placeholders()
ph <- names(res)
mom <- weighted_moments(x, obs$w, n = 2L)
if ("mu" %in% ph) {
res$mu <- mom[1L]
}
if ("size" %in% ph) {
res$size <- if (mom[2L] > mom[1L]) {
mom[1L]^2.0 / (mom[2L] - mom[1L])
} else {
100.0
}
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.