Nothing
#' Pareto Distribution
#'
#' See [Pareto]
#'
#' Both parameters can be overridden with
#' `with_params = list(shape = ..., scale = ...)`.
#'
#' @param shape Scalar shape parameter, or `NULL` as a placeholder.
#' @param scale Scalar scale parameter, or `NULL` as a placeholder.
#'
#' @return A `ParetoDistribution` object.
#' @export
#'
#' @examples
#' d_pareto <- dist_pareto(shape = 3, scale = 1)
#' x <- d_pareto$sample(100)
#' d_emp <- dist_empirical(x)
#'
#' plot_distributions(
#' empirical = d_emp,
#' theoretical = d_pareto,
#' estimated = d_pareto,
#' with_params = list(
#' estimated = inflate_params(
#' fitdistrplus::fitdist(x, distr = "pareto")$estimate
#' )
#' ),
#' .x = seq(0, 2, length.out = 100)
#' )
#'
#' @family Distributions
dist_pareto <- function(shape = NULL, scale = NULL) {
ParetoDistribution$new(shape = shape, scale = scale)
}
#' @include pareto.R
ParetoDistribution <- distribution_class_simple(
name = "Pareto",
fun_name = "pareto",
params = list(
shape = I_POSITIVE_REALS,
scale = I_POSITIVE_REALS
),
support = I_POSITIVE_REALS,
diff_density = function(x, vars, log, params) {
res <- vars
if ("shape" %in% names(vars)) {
res$shape <- if (log) {
1.0 / params$shape + log(params$scale) - log(x + params$scale)
} else {
(1.0 / params$shape + log(params$scale) - log(x + params$scale)) *
dpareto(x, shape = params$shape, scale = params$scale)
}
}
if ("scale" %in% names(vars)) {
res$scale <- if (log) {
params$shape / params$scale - (params$shape + 1.0) / (x + params$scale)
} else {
(
params$shape / params$scale -
(params$shape + 1.0) / (x + params$scale)
) *
dpareto(x, shape = params$shape, scale = params$scale)
}
}
res
},
diff_probability = function(q, vars, lower.tail, log.p, params) {
res <- vars
# Avoid NaNs
q <- pmax(0.0, q)
if ("shape" %in% names(vars)) {
res$shape <- if (log.p) {
if (lower.tail) {
(log(params$scale) - log(q + params$scale)) *
ppareto(q, shape = params$shape, scale = params$scale,
lower.tail = FALSE) /
ppareto(q, shape = params$shape, scale = params$scale)
} else {
log(params$scale) - log(q + params$scale)
}
} else {
(log(params$scale) - log(q + params$scale)) *
ppareto(
q, shape = params$shape, scale = params$scale, lower.tail = FALSE
)
}
if (!log.p) res$shape[is.infinite(q)] <- 0.0
if (lower.tail) res$shape <- -res$shape
}
if ("scale" %in% names(vars)) {
res$scale <- if (log.p) {
if (lower.tail) {
params$shape / params$scale * q / (q + params$scale) *
ppareto(
q, shape = params$shape, scale = params$scale, lower.tail = FALSE
) /
ppareto(q, shape = params$shape, scale = params$scale)
} else {
params$shape / params$scale * q / (q + params$scale)
}
} else {
(params$shape / params$scale * q / (q + params$scale)) *
ppareto(
q, shape = params$shape, scale = params$scale, lower.tail = FALSE
)
}
if (!log.p) res$scale[is.infinite(q)] <- 0.0
if (lower.tail) res$scale <- -res$scale
}
res
},
tf_logdensity = function() function(x, args) { # nolint: brace.
shape <- args[["shape"]]
scale <- args[["scale"]]
ok <- x >= K$zero & tf$math$is_finite(x)
x_safe <- tf$where(ok, x, K$zero)
tf$where(
ok,
log(shape) - (shape + K$one) * log(K$one + x_safe / scale) - log(scale),
K$neg_inf
)
},
tf_logprobability = function() function(qmin, qmax, args) { # nolint: brace.
shape <- args[["shape"]]
scale <- args[["scale"]]
qmin0 <- qmin <= K$zero
qmin_safe <- tf$math$maximum(K$zero, qmin)
qmax0 <- qmax > K$zero
qmax_ok <- tf$math$is_finite(qmax) & qmax > K$zero
qmax_safe <- tf$where(qmax_ok, qmax, qmin_safe + K$one)
qmax_nok <- tf$where(qmax0, K$neg_inf, K$zero)
qmin_sc <- K$one + qmin_safe / scale
qmax_sc <- K$one + qmax_safe / scale
tf$where(
qmin0,
tf$where(
qmax_ok,
log(K$one - tf$math$pow(qmax_sc, -shape)),
qmax_nok
),
tf$where(
qmax_ok,
log(tf$math$pow(qmin_sc, -shape) - tf$math$pow(qmax_sc, -shape)),
-shape * log(qmin_sc)
)
)
}
)
#' @export
fit_dist_start.ParetoDistribution <- function(dist, obs, ...) {
obs <- as_trunc_obs(obs)
x <- .get_init_x(obs, .min = 0.0)
res <- dist$get_placeholders()
ph <- names(res)
mom <- weighted_moments(x, obs$w, n = 2L, center = FALSE)
if ("scale" %in% ph && "shape" %in% ph) {
sc <- (mom[1L] * mom[2L]) / (mom[2L] - 2.0 * mom[1L]^2.0)
if (sc < 0.0) { # illegal estimates produced by moment matching
med <- weighted_median(x, obs$w)
sc <- med
for (iter in seq_len(5L)) {
shpinv <- weighted.mean(log(x + sc), obs$w) - log(sc)
sc <- med / (2.0^shpinv - 1.0)
}
res$scale <- sc
res$shape <- 1.0 / shpinv
} else {
res$scale <- sc
res$shape <- 1.0 + sc / mom[1L]
}
} else if ("shape" %in% ph) {
sc <- dist$get_params()$scale
res$shape <- 1 / weighted.mean(log(x + sc) - log(sc), obs$w)
} else { # > "scale" %in% ph
shp <- dist$get_params()$shape
if (shp <= 1.0) {
res$scale <- weighted_median(x, obs$w) / (2.0^(1.0 / shp) - 1.0)
} else {
res$scale <- mom[1L] * (shp - 1.0)
}
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.