Nothing
#' Weibull Distribution
#'
#' See [stats::Weibull]
#'
#' Both parameters can be overridden with
#' `with_params = list(shape = ..., scale = ...)`.
#'
#' @param shape Scalar shape parameter, or `NULL` as a placeholder.
#' @param scale Scalar scale parameter, or `NULL` as a placeholder.
#'
#' @return A `WeibullDistribution` object.
#' @export
#'
#' @examples
#' d_weibull <- dist_weibull(shape = 3, scale = 1)
#' x <- d_weibull$sample(100)
#' d_emp <- dist_empirical(x)
#'
#' plot_distributions(
#' empirical = d_emp,
#' theoretical = d_weibull,
#' estimated = d_weibull,
#' with_params = list(
#' estimated = inflate_params(
#' fitdistrplus::fitdist(x, distr = "weibull")$estimate
#' )
#' ),
#' .x = seq(0, 2, length.out = 100)
#' )
#'
#' @family Distributions
dist_weibull <- function(shape = NULL, scale = NULL) {
WeibullDistribution$new(shape = shape, scale = scale)
}
WeibullDistribution <- distribution_class_simple(
name = "Weibull",
fun_name = "weibull",
params = list(
shape = I_POSITIVE_REALS,
scale = I_POSITIVE_REALS
),
support = I_POSITIVE_REALS,
diff_density = function(x, vars, log, params) {
res <- vars
if (length(vars)) {
z <- x / params$scale
}
if ("shape" %in% names(vars)) {
log_diff_shape <- 1.0 / params$shape + (1 - z^(params$shape)) * log(z)
res$shape <- if (log) {
log_diff_shape
} else {
log_diff_shape * dweibull(x, shape = params$shape, scale = params$scale)
}
}
if ("scale" %in% names(vars)) {
log_diff_scale <- params$shape / params$scale * (z^(params$shape) - 1.0)
res$scale <- if (log) {
log_diff_scale
} else {
log_diff_scale * dweibull(x, shape = params$shape, scale = params$scale)
}
}
res
},
diff_probability = function(q, vars, lower.tail, log.p, params) {
res <- vars
if (length(vars)) {
z <- q / params$scale
z_pow_alpha <- z^(params$shape)
}
if ("shape" %in% names(vars)) {
z[is.infinite(q) | q <= 0] <- 0.0
diff_shape <- log(z) * z_pow_alpha * exp(-z_pow_alpha)
diff_shape[is.infinite(q) | q <= 0] <- 0.0
res$shape <- if (log.p) {
diff_shape / pweibull(q, shape = params$shape, scale = params$scale,
lower.tail = lower.tail)
} else {
diff_shape
}
if (!lower.tail) res$shape <- -res$shape
}
if ("scale" %in% names(vars)) {
diff_scale <- params$shape / params$scale *
z_pow_alpha *
exp(-z_pow_alpha)
diff_scale[is.infinite(q) | q <= 0] <- 0.0
res$scale <- if (log.p) {
diff_scale / pweibull(q, shape = params$shape, scale = params$scale,
lower.tail = lower.tail)
} else {
diff_scale
}
if (lower.tail) res$scale <- -res$scale
}
res
},
tf_logdensity = function() function(x, args) { # nolint: brace.
shape <- args[["shape"]]
scale <- args[["scale"]]
ok <- x > 0.0 & tf$math$is_finite(x)
x_safe <- tf$where(ok, x, 1.0)
tf$where(
ok,
log(shape) + (shape - 1.0) * log(x_safe) - shape * log(scale) - tf$math$pow(x_safe / scale, shape),
K$neg_inf
)
},
tf_logprobability = function() function(qmin, qmax, args) { # nolint: brace.
shape <- args[["shape"]]
scale <- args[["scale"]]
qmin0 <- qmin <= 0.0
qmin_safe <- tf$where(qmin0, K$one, qmin / scale)
qmax0 <- qmax > 0.0
qmax_ok <- tf$math$is_finite(qmax) & qmax > 0.0
qmax_safe <- tf$where(qmax_ok, qmax / scale, qmin_safe + 1.0)
qmax_safe2 <- tf$where(qmin0, qmin_safe + 1.0, qmax_safe)
qmax_nok <- tf$where(qmax0, K$neg_inf, K$zero)
tf$where(
qmin0,
tf$where(
qmax_ok,
tf$math$log1p(-exp(-tf$math$pow(qmax_safe, shape))),
qmax_nok
),
tf$where(
qmax_ok,
log(exp(-tf$math$pow(qmin_safe, shape)) - exp(-tf$math$pow(qmax_safe2, shape))),
-tf$math$pow(qmin_safe, shape)
)
)
}
)
#' @export
fit_dist_start.WeibullDistribution <- function(dist, obs, ...) {
obs <- as_trunc_obs(obs)
x <- .get_init_x(obs, .min = 0.0)
res <- dist$get_placeholders()
ph <- names(res)
logmom <- weighted_moments(log(x), obs$w, n = 2L)
if ("shape" %in% ph) {
shape <- 1.2 / sqrt(logmom[2L])
res$shape <- shape
} else {
shape <- dist$get_params()$shape
}
if ("scale" %in% ph) {
res$scale <- exp(logmom[1L] + 0.572 / shape)
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.