Nothing
#' Class for the Affine Metric on the Manifold of Symmetric Positive Definite
#' Matrices
#'
#' @description An [R6::R6Class] object implementing the [`SPDMetricAffine`]
#' class. This is the class for the affine-invariant metric on the SPD
#' manifold \insertCite{thanwerdas2019affine}{rgeomstats}.
#'
#' @references
#' \insertAllCited{}
#'
#' @author Yann Thanwerdas
#'
#' @export
SPDMetricAffine <- R6::R6Class(
classname = "SPDMetricAffine",
inherit = RiemannianMetric,
public = list(
#' @field n An integer value specifying the shape of the matrices: \eqn{n
#' \times n}.
n = NULL,
#' @field power_affine An integer value specifying the power transformation
#' of the classical SPD metric.
power_affine = NULL,
#' @description The [`SPDMetricAffine`] class constructor.
#'
#' @param n An integer value specifying the shape of the matrices: \eqn{n
#' \times n}.
#' @param power_affine An integer value specifying the power transformation
#' of the classical SPD metric. Defaults to `1L`.
#' @param py_cls A Python object of class `SPDMetricAffine`. Defaults to
#' `NULL` in which case it is instantiated on the fly using the other
#' input arguments.
#'
#' @return An object of class [`SPDMetricAffine`].
initialize = function(n, power_affine = 1, py_cls = NULL) {
if (is.null(py_cls)) {
n <- as.integer(n)
power_affine <- as.integer(power_affine)
py_cls <- gs$geometry$spd_matrices$SPDMetricAffine(
n = n,
power_affine = power_affine
)
}
super$set_python_class(py_cls)
private$set_fields()
}
),
private = list(
set_fields = function() {
super$set_fields()
self$n <- super$get_python_class()$n
self$power_affine <- super$get_python_class()$power_affine
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.