R/sc_d_moving_holiday.R

Defines functions plot.moving_holiday_pattern moving_holiday_pattern

moving_holiday_pattern <- function(x){
    # UseMethod("moving_holiday_pattern", x)
    if(!all(c("preprocessing.model.mhe_f") %in% names(x$user_defined))){
        if(inherits(x, "X13")){
            my_spec <- RJDemetra::x13_spec(x)
            x <- RJDemetra::x13(x$final$series[,"y"], my_spec,
                                userdefined = "preprocessing.model.mhe_f")
        }else if(inherits(x, "TRAMO_SEATS ")){
            my_spec <- RJDemetra::tramoseats_spec(x)
            x <- RJDemetra::tramoseats(x$final$series[,"y"], my_spec,
                                       userdefined = "preprocessing.model.mhe_f")
        }else{
            stop("Wrong type of object")
        }
    }
    is_multiplicative <- x$regarima$model$spec_rslt[, "Log transformation"]
    
    mhe <- x$regarima$model$effects[,"ee"]
    last_date <- time(mhe)[length(time(mhe))]
    mhe <- window(mhe, start = last_date - 1 + deltat(mhe))
    freq <- frequency(mhe)
    
    if (is_multiplicative) {
        mhe <- exp(mhe)
    }
    
    estimated_values <- as.numeric(mhe)
    evolution <- c(tail(mhe, 2),
                   head(x$user_defined$preprocessing.model.mhe_f,1))
    if (!is_multiplicative) {
        series_mean <- mean(x$final$series[,"y"],
                            na.rm = TRUE)
        estimated_values <- as.numeric(estimated_values) / series_mean + 1
        evolution <- evolution/series_mean + 1 
    }
    
    if (freq == 12) {
        names(estimated_values) <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
                                     "Oct", "Nov", "Dec")[cycle(mhe)]
        period <- "Month"
    }else{
        names(estimated_values) <- sprintf("Q%i",1:4)[cycle(mhe)]
        period <- "Quarter"
    }
    estimated_values <- (estimated_values - 1) * 100
    evolution <- (evolution - 1) * 100
    evolution <- data.frame(Evolution = evolution,
                            row.names = sprintf("%s %s",
                                                c("Previous", "Current", "Next"),
                                                period))
    result <- list(estimated_values = estimated_values, evolution = evolution)
    class(result) <- c("moving_holiday_pattern", class(result))
    result
}
# moving_holiday_pattern.X13 <- function(x){
#     if (!all(c("preprocessing.model.mhe_f") %in% names(x$user_defined))) {
#         my_spec <- RJDemetra::x13_spec(x)
#         x <- RJDemetra::x13(x$final$series[,"y"], my_spec,userdefined = "preprocessing.model.mhe_f")
#     }
#     
#     mhe <- x$regarima$model$effects[,"ee"]
#     last_date <- tail(time(mhe), 1)
#     mhe <- window(mhe, start = last_date - 1 + deltat(mhe))
#     is_multiplicative <- x$regarima$model$spec_rslt[, "Log transformation"]
#     
#     freq <- frequency(mhe)
#     
#     estimated_values <- as.numeric(mhe)
#     evolution <- c(tail(mhe, 2),
#                    head(x$user_defined$preprocessing.model.mhe_f,1))
#     if (!is_multiplicative) {
#         series_mean <- mean(x$final$series[,"y"],
#                             na.rm = TRUE)
#         estimated_values <- as.numeric(estimated_values) / series_mean + 1
#         evolution <- evolution/series_mean + 1 
#     }
#     
#     if (freq == 12) {
#         names(estimated_values) <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
#                                      "Oct", "Nov", "Dec")[cycle(mhe)]
#         period <- "Month"
#     }else{
#         names(estimated_values) <- sprintf("Q%i",1:4)[cycle(mhe)]
#         period <- "Quarter"
#     }
#     estimated_values <- (estimated_values - 1) * 100
#     evolution <- (evolution - 1) * 100
#     evolution <- data.frame(Evolution = evolution,
#                             row.names = sprintf("%s %s",
#                                                 c("Previous", "Current", "Next"),
#                                                 period))
#     result <- list(estimated_values = estimated_values, evolution = evolution)
#     class(result) <- c("moving_holiday_pattern", class(result))
#     result
# }
# moving_holiday_pattern.TRAMO_SEATS <- function(x){
#     if (!all(c("preprocessing.model.mhe_f") %in% names(x$user_defined))) {
#         my_spec <- RJDemetra::tramoseats_spec(x)
#         x <- RJDemetra::tramoseats(x$final$series[,"y"], my_spec,
#                                    userdefined = "preprocessing.model.mhe_f")
#     }
#     is_multiplicative <- x$regarima$model$spec_rslt[, "Log transformation"]
#     
#     mhe <- x$regarima$model$effects[,"ee"]
#     last_date <- tail(time(mhe), 1)
#     mhe <- window(mhe, start = last_date - 1 + deltat(mhe))
#     freq <- frequency(mhe)
#     
#     if (is_multiplicative) {
#         mhe <- exp(mhe)
#     }
#     
#     estimated_values <- as.numeric(mhe)
#     evolution <- c(tail(mhe, 2),
#                    head(x$user_defined$preprocessing.model.mhe_f,1))
#     if (!is_multiplicative) {
#         series_mean <- mean(x$final$series[,"y"],
#                             na.rm = TRUE)
#         estimated_values <- as.numeric(estimated_values) / series_mean + 1
#         evolution <- evolution/series_mean + 1 
#     }
#     
#     if (freq == 12) {
#         names(estimated_values) <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
#                                      "Oct", "Nov", "Dec")[cycle(mhe)]
#         period <- "Month"
#     }else{
#         names(estimated_values) <- sprintf("Q%i",1:4)[cycle(mhe)]
#         period <- "Quarter"
#     }
#     estimated_values <- (estimated_values - 1) * 100
#     evolution <- (evolution - 1) * 100
#     evolution <- data.frame(Evolution = evolution,
#                             row.names = sprintf("%s %s",
#                                                 c("Previous", "Current", "Next"),
#                                                 period))
#     result <- list(estimated_values = estimated_values, evolution = evolution)
#     class(result) <- c("moving_holiday_pattern", class(result))
#     result
# }
#'@exportS3Method NULL
plot.moving_holiday_pattern <- function(x, ...){
    if(is.null(x$evolution)){
        plot(0,type='n',axes=FALSE,main="Moving Holiday Pattern")
        plot.new()
        return(invisible(NULL))
    }
    
    data_table <- round(x$evolution, 1)
    if(data_table$Evolution[3] > 0){
        title = expression("Moving Holiday Effects: " %dblup% " expected")
    }else if (data_table$Evolution[3] < 0){
        title = expression("Moving Holiday Effects: " %dbldown% " expected")
    }else{
        title = expression("Moving Holiday Effects: " %=>% " expected")
    }
    data_table$Evolution <- sprintf("%+.1f%%",data_table$Evolution)
    
    mai <- par("mai")  
    barplot(x$estimated_values, names.arg=names(x$estimated_values),ann=FALSE,
            main = "Moving Holiday Pattern")
    par(mai = c(0,0,0,0))
    plot(0,type='n',axes=FALSE,ann = F, xlim = c(0,1), ylim = c(0,1))
    plotrix::addtable2plot(0.5, 0.5,
                  data_table[-3,, drop=FALSE], bty = "o", display.rownames = TRUE, hlines = TRUE,
                  display.colnames = FALSE,
                  vlines = TRUE,title = title, xjust = 0.5, yjust = 0.5)
    par(mai = mai)
    
}

Try the rjdqa package in your browser

Any scripts or data that you put into this service are public.

rjdqa documentation built on June 22, 2024, 10:20 a.m.