predictrms | R Documentation |
The predict
function is used to obtain a variety of values or
predicted values from either the data used to fit the model (if
type="adjto"
or "adjto.data.frame"
or if x=TRUE
or
linear.predictors=TRUE
were specified to the modeling function), or from
a new dataset. Parameters such as knots and factor levels used in creating
the design matrix in the original fit are "remembered".
See the Function
function for another method for computing the
linear predictors. predictrms
is an internal utility function
that is for the other functions.
predictrms(fit, newdata=NULL,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean', 'individual', 'simultaneous'),
kint=NULL, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ref.zero=FALSE,
posterior.summary=c('mean', 'median', 'mode'),
second=FALSE, ...)
## S3 method for class 'bj'
predict(object, newdata,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1,
na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # for bj
## S3 method for class 'cph'
predict(object, newdata=NULL,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # cph
## S3 method for class 'Glm'
predict(object, newdata,
type= c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # Glm
## S3 method for class 'Gls'
predict(object, newdata,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # Gls
## S3 method for class 'ols'
predict(object, newdata,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # ols
## S3 method for class 'psm'
predict(object, newdata,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),
se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # psm
object , fit |
a fit object with an |
newdata |
An S data frame, list or a matrix specifying new data for which predictions
are desired. If |
type |
Type of output desired. The default is |
se.fit |
Defaults to |
conf.int |
Specify |
conf.type |
specifies the type of confidence interval. Default is for the mean.
For |
posterior.summary |
when making predictions from a Bayesian model, specifies whether you want the linear predictor to be computed from the posterior mean of parameters (default) or the posterior mode or median median |
second |
set to |
kint |
a single integer specifying the number of the intercept to use in
multiple-intercept models. The default is 1 for |
na.action |
Function to handle missing values in |
expand.na |
set to |
center.terms |
set to |
ref.zero |
Set to |
... |
ignored |
datadist
and options(datadist=)
should be run before predictrms
if using type="adjto"
, type="adjto.data.frame"
, or type="terms"
,
or if the fit is a Cox model fit and you are requesting se.fit=TRUE
.
For these cases, the adjustment values are needed (either for the
returned result or for the correct covariance matrix computation).
Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com
plot.Predict
, ggplot.Predict
,
summary.rms
,
rms
, rms.trans
, predict.lrm
,
predict.orm
,
residuals.cph
, datadist
,
gendata
, gIndex
,
Function.rms
, reShape
,
xYplot
, contrast.rms
n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
treat <- factor(sample(c('a','b','c'), n,TRUE))
# Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +
(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) +
.3*sqrt(blood.pressure-60)-2.3 + 1*(treat=='b')
# Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)
ddist <- datadist(age, blood.pressure, cholesterol, sex, treat)
options(datadist='ddist')
fit <- lrm(y ~ rcs(blood.pressure,4) +
sex * (age + rcs(cholesterol,4)) + sex*treat*age)
# Use xYplot to display predictions in 9 panels, with error bars,
# with superposition of two treatments
dat <- expand.grid(treat=levels(treat),sex=levels(sex),
age=c(20,40,60),blood.pressure=120,
cholesterol=seq(100,300,length=10))
# Add variables linear.predictors and se.fit to dat
dat <- cbind(dat, predict(fit, dat, se.fit=TRUE))
# This is much easier with Predict
# xYplot in Hmisc extends xyplot to allow error bars
xYplot(Cbind(linear.predictors,linear.predictors-1.96*se.fit,
linear.predictors+1.96*se.fit) ~ cholesterol | sex*age,
groups=treat, data=dat, type='b')
# Since blood.pressure doesn't interact with anything, we can quickly and
# interactively try various transformations of blood.pressure, taking
# the fitted spline function as the gold standard. We are seeking a
# linearizing transformation even though this may lead to falsely
# narrow confidence intervals if we use this data-dredging-based transformation
bp <- 70:160
logit <- predict(fit, expand.grid(treat="a", sex='male', age=median(age),
cholesterol=median(cholesterol),
blood.pressure=bp), type="terms")[,"blood.pressure"]
#Note: if age interacted with anything, this would be the age
# "main effect" ignoring interaction terms
#Could also use Predict(f, age=ag)$yhat
#which allows evaluation of the shape for any level of interacting
#factors. When age does not interact with anything, the result from
#predict(f, \dots, type="terms") would equal the result from
#plot if all other terms were ignored
plot(bp^.5, logit) # try square root vs. spline transform.
plot(bp^1.5, logit) # try 1.5 power
plot(sqrt(bp-60), logit)
#Some approaches to making a plot showing how predicted values
#vary with a continuous predictor on the x-axis, with two other
#predictors varying
combos <- gendata(fit, age=seq(10,100,by=10), cholesterol=c(170,200,230),
blood.pressure=c(80,120,160))
#treat, sex not specified -> set to mode
#can also used expand.grid
require(lattice)
combos$pred <- predict(fit, combos)
xyplot(pred ~ age | cholesterol*blood.pressure, data=combos, type='l')
xYplot(pred ~ age | cholesterol, groups=blood.pressure, data=combos, type='l')
Key() # Key created by xYplot
xYplot(pred ~ age, groups=interaction(cholesterol,blood.pressure),
data=combos, type='l', lty=1:9)
Key()
# Add upper and lower 0.95 confidence limits for individuals
combos <- cbind(combos, predict(fit, combos, conf.int=.95))
xYplot(Cbind(linear.predictors, lower, upper) ~ age | cholesterol,
groups=blood.pressure, data=combos, type='b')
Key()
# Plot effects of treatments (all pairwise comparisons) vs.
# levels of interacting factors (age, sex)
d <- gendata(fit, treat=levels(treat), sex=levels(sex), age=seq(30,80,by=10))
x <- predict(fit, d, type="x")
betas <- fit$coef
cov <- vcov(fit, intercepts='none')
i <- d$treat=="a"; xa <- x[i,]; Sex <- d$sex[i]; Age <- d$age[i]
i <- d$treat=="b"; xb <- x[i,]
i <- d$treat=="c"; xc <- x[i,]
doit <- function(xd, lab) {
xb <- matxv(xd, betas)
se <- apply((xd %*% cov) * xd, 1, sum)^.5
q <- qnorm(1-.01/2) # 0.99 confidence limits
lower <- xb - q * se; upper <- xb + q * se
#Get odds ratios instead of linear effects
xb <- exp(xb); lower <- exp(lower); upper <- exp(upper)
#First elements of these agree with
#summary(fit, age=30, sex='female',conf.int=.99))
for(sx in levels(Sex)) {
j <- Sex==sx
errbar(Age[j], xb[j], upper[j], lower[j], xlab="Age",
ylab=paste(lab, "Odds Ratio"), ylim=c(.1, 20), log='y')
title(paste("Sex:", sx))
abline(h=1, lty=2)
}
}
par(mfrow=c(3,2), oma=c(3,0,3,0))
doit(xb - xa, "b:a")
doit(xc - xa, "c:a")
doit(xb - xa, "c:b")
# NOTE: This is much easier to do using contrast.rms
# Demonstrate type="terms", "cterms", "ccterms"
set.seed(1)
n <- 40
x <- 1:n
w <- factor(sample(c('a', 'b'), n, TRUE))
u <- factor(sample(c('A', 'B'), n, TRUE))
y <- .01*x + .2*(w=='b') + .3*(u=='B') + .2*(w=='b' & u=='B') + rnorm(n)/5
ddist <- datadist(x, w, u)
f <- ols(y ~ x*w*u, x=TRUE, y=TRUE)
f
anova(f)
z <- predict(f, type='terms', center.terms=FALSE)
z[1:5,]
k <- coef(f)
## Manually compute combined terms
wb <- w=='b'
uB <- u=='B'
h <- k['x * w=b * u=B']*x*wb*uB
tx <- k['x'] *x + k['x * w=b']*x*wb + k['x * u=B'] *x*uB + h
tw <- k['w=b']*wb + k['x * w=b']*x*wb + k['w=b * u=B']*wb*uB + h
tu <- k['u=B']*uB + k['x * u=B']*x*uB + k['w=b * u=B']*wb*uB + h
h <- z[,'x * w * u'] # highest order term is present in all cterms
tx2 <- z[,'x']+z[,'x * w']+z[,'x * u']+h
tw2 <- z[,'w']+z[,'x * w']+z[,'w * u']+h
tu2 <- z[,'u']+z[,'x * u']+z[,'w * u']+h
ae <- function(a, b) all.equal(a, b, check.attributes=FALSE)
ae(tx, tx2)
ae(tw, tw2)
ae(tu, tu2)
zc <- predict(f, type='cterms')
zc[1:5,]
ae(tx, zc[,'x'])
ae(tw, zc[,'w'])
ae(tu, zc[,'u'])
zc <- predict(f, type='ccterms')
# As all factors are indirectly related, ccterms gives overall linear
# predictor except for the intercept
zc[1:5,]
ae(as.vector(zc + coef(f)[1]), f$linear.predictors)
## Not run:
#A variable state.code has levels "1", "5","13"
#Get predictions with or without converting variable in newdata to factor
predict(fit, data.frame(state.code=c(5,13)))
predict(fit, data.frame(state.code=factor(c(5,13))))
#Use gendata function (gendata.rms) for interactive specification of
#predictor variable settings (for 10 observations)
df <- gendata(fit, nobs=10, viewvals=TRUE)
df$predicted <- predict(fit, df) # add variable to data frame
df
df <- gendata(fit, age=c(10,20,30)) # leave other variables at ref. vals.
predict(fit, df, type="fitted")
# See reShape (in Hmisc) for an example where predictions corresponding to
# values of one of the varying predictors are reformatted into multiple
# columns of a matrix
## End(Not run)
options(datadist=NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.