R/survest.orm.r

Defines functions survest.orm

Documented in survest.orm

#' Title survest.orm
#'
#' @param fit result of `orm`
#' @param newdata data frame defining covariate settings
#' @param linear.predictors linear predictor vector using the reference intercept
#' @param x design matrix
#' @param times times for which estimates are desired; defaults to estimating probabilities of T > t for all uncensored times
#' @param fun optional transformation of survival probabilities
#' @param loglog set to `TRUE` to use the log-log transformatino
#' @param conf.int a number between 0-1 with the default of 0.95; set to 0 to not compute CLs
#' @param what specify `what='parallel'` to compute the survival probability at the observed linear predictor and time values, both varying; all possible combinations of these are then not created
#' @param ... ignored
#'
#' @returns a data frame with variables `time, surv`.  If `conf.int > 0` the data also contains `lower, upper`.  The variable `Xrow` indicates the row of the design matrix or the linear predictor element used in getting the current data frame row estimate.
#' @export
#'
#' @md
#' @author Frank Harrell
#' @examples
#' # See survest.psm
survest.orm <- function(fit, newdata=NULL, linear.predictors=NULL, x=NULL, times=NULL,
                        fun, loglog=FALSE, conf.int=0.95,
                        what=c("survival", "parallel"),
                        ...) {

  what <- match.arg(what)
  if(what=='parallel') conf.int <- FALSE

  S <- Survival(fit)

  if(missing(fun)) fun <- if(loglog) function(x) logb(ifelse(x == 0 | x == 1, NA, x))
  else function(x) x

  if(conf.int > 0 && ! missing(linear.predictors)) {
    warning('conf.int set to 0 since linear.predictors specified')
    conf.int <- 0
  }

  p <- length(fit$coef) - num.intercepts(fit)

  lx <- length(x)
  ln <- length(newdata)
  lt <- length(times)

  if(what == 'parallel' && ! lt) stop('times must be given when what="parallel"')

  if(! length(linear.predictors)) {
    linear.predictors <- if(p == 0) 0
    if(p > 0 && ! lx && ! ln) {
      if(what != 'parallel' && ! lt)
        stop('specify times= if using linear predictors from fit')
      linear.predictors <- fit$linear.predictors
      if(conf.int > 0)
        stop("may not specify conf.int > 0 unless x or newdata given")
      rnam <- names(linear.predictors)
    }
    else {
      if(! lx) x <- predict(fit, newdata, type="x")
      rnam <- dimnames(x)[[1]]
    }
  }
  else  rnam <- names(linear.predictors)

  if(what == 'parallel') 
    return(S(times, linear.predictors, parallel=TRUE))

  n <- length(linear.predictors)

  if(n > 1 & ! lt)
    warning("should specify times if getting predictions for >1 obs.")

  S(times, linear.predictors, X=x, conf.int=conf.int, forcedf=TRUE, zero=TRUE)
  }

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on April 12, 2025, 1:18 a.m.