Nothing
# Huber M-estimator of the weighted mean (depends on pkg survey)
svymean_huber <- function(x, design, k, type = "rwm", asym = FALSE,
na.rm = FALSE, verbose = TRUE, ...)
{
if (!is.language(x))
stop("Argument 'x' must be a formula object\n", call. = FALSE)
dat <- .check_formula(x, design, na.rm)
# in the presence of NA's
if (dat$failure)
return(.new_svystat_rob("mean", dat$yname,
paste0("Huber M-estimator (type = ", type,
if (asym) "; asym. psi" else "", ")"), dat$domain,
dat$design, match.call(), "mest", type = type,
psi = if (asym) 1 else 0, psi_fun = "Huber", k = k))
# population- vs. domain-level estimate
res <- if (dat$domain)
weighted_mean_huber(dat$y[dat$in_domain], dat$w[dat$in_domain], k,
type, asym, TRUE, FALSE, verbose, ...)
else
weighted_mean_huber(dat$y, dat$w, k, type, asym, TRUE, FALSE, verbose,
...)
# modify residuals for type 'rht' (only for variance estimation)
r <- if (type == "rht")
sqrt(res$model$var) * res$model$y - res$estimate
else
res$residuals
# influence function
infl <- if (dat$domain) {
tmp <- numeric(dat$n)
tmp[dat$in_domain] <- res$robust$robweights * r * res$model$w /
sum(res$model$w)
tmp
} else {
res$robust$robweights * r * res$model$w / sum(res$model$w)
}
# compute variance
design <- dat$design
res$variance <- svyrecvar(infl, design$cluster, design$strata, design$fpc,
postStrata = design$postStrata)
# return
names(res$estimate) <- dat$yname
res$estimator$domain <- dat$domain
res$design <- dat$design
res$call <- match.call()
class(res) <- c("svystat_rob", "mer_capable")
res
}
# Huber M-estimator of the weighted total (depends on pkg survey)
svytotal_huber <- function(x, design, k, type = "rwm", asym = FALSE,
na.rm = FALSE, verbose = TRUE, ...)
{
if (!is.language(x))
stop("Argument 'x' must be a formula object\n", call. = FALSE)
dat <- .check_formula(x, design, na.rm)
# in the presence of NA's
if (dat$failure)
return(.new_svystat_rob("total", dat$yname,
paste0("Huber M-estimator (type = ", type,
if (asym) "; asym. psi" else "", ")"), dat$domain,
dat$design, match.call(), "mest", type = type,
psi = if (asym) 1 else 0, psi_fun = "Huber", k = k))
# population- vs. domain-level estimate
res <- if (dat$domain)
weighted_total_huber(dat$y[dat$in_domain], dat$w[dat$in_domain], k,
type, asym, TRUE, FALSE, verbose, ...)
else
weighted_total_huber(dat$y, dat$w, k, type, asym, TRUE, FALSE, verbose,
...)
# influence function
infl <- if (dat$domain) {
tmp <- numeric(dat$n)
tmp[dat$in_domain] <- res$robust$robweights * res$model$w *
res$model$y
tmp
} else {
res$robust$robweights * res$model$y * res$model$w
}
# compute variance
design <- dat$design
res$variance <- svyrecvar(infl, design$cluster, design$strata, design$fpc,
postStrata = design$postStrata)
# return
names(res$estimate) <- dat$yname
res$estimator$domain <- dat$domain
res$design <- dat$design
res$call <- match.call()
class(res) <- c("svystat_rob", "mer_capable")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.