read.preclustered.datasets: Read Preclustered Datasets

Description Usage Arguments Examples

View source: R/read_data.R

Description

Read previous analysis of multiple datasets to perform integrated analysis.

Usage

1
2
read.preclustered.datasets(environment, path = NA, recursive = T,
  rerun = F)

Arguments

environment

environment object

path

search path for previous projects

recursive

recursive path search

rerun

whether to rerun the reading process or load from cache

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
LCMV1 <- setup_LCMV_example()
LCMV1 <- get.variable.genes(LCMV1, min.mean = 0.1, min.frac.cells = 0,
min.dispersion.scaled = 0.1)
LCMV1 <- PCA(LCMV1)
LCMV1 <- cluster.analysis(LCMV1)
types = rbind(
data.frame(type='Tfh',gene=c('Tcf7','Cxcr5','Bcl6')),
data.frame(type='Th1',gene=c('Cxcr6','Ifng','Tbx21')),
data.frame(type='Tcmp',gene=c('Ccr7','Bcl2','Tcf7')),
data.frame(type='Treg',gene=c('Foxp3','Il2ra')),
data.frame(type='Tmem',gene=c('Il7r','Ccr7')),
data.frame(type='CD8',gene=c('Cd8a')),
data.frame(type='CD4', gene = c("Cd4")),
data.frame(type='Cycle',gene=c('Mki67','Top2a','Birc5'))
)
summarize(LCMV1)
cluster_names <- get.cluster.names(LCMV1, types, min.fold = 1.0, max.Qval = 0.01)
LCMV1 <- set.cluster.names(LCMV1, names = cluster_names)
LCMV2 <- setup_LCMV_example("LCMV2")
LCMV2 <- get.variable.genes(LCMV2, min.mean = 0.1, min.frac.cells = 0,
min.dispersion.scaled = 0.1)
LCMV2 <- PCA(LCMV2)
LCMV2 <- cluster.analysis(LCMV2)
summarize(LCMV2)
cluster_names <- get.cluster.names(LCMV2, types, min.fold = 1.0, max.Qval = 0.01)
LCMV2 <- set.cluster.names(LCMV2, names = cluster_names)
pooled_env <- setup_pooled_env()
pooled_env <- read.preclustered.datasets(pooled_env)

robustSingleCell documentation built on May 2, 2019, 2:11 p.m.