huberM | R Documentation |

(Generalized) Huber M-estimator of location with MAD scale, being
sensible also when the scale is zero where `huber()`

returns an error.

```
huberM(x, k = 1.5, weights = NULL, tol = 1e-06,
mu = if(is.null(weights)) median(x) else wgt.himedian(x, weights),
s = if(is.null(weights)) mad(x, center=mu)
else wgt.himedian(abs(x - mu), weights),
se = FALSE,
warn0scale = getOption("verbose"))
```

`x` |
numeric vector. |

`k` |
positive factor; the algorithm winsorizes at |

`weights` |
numeric vector of non-negative weights of same length
as |

`tol` |
convergence tolerance. |

`mu` |
initial location estimator. |

`s` |
scale estimator held constant through the iterations. |

`se` |
logical indicating if the standard error should be computed
and returned (as |

`warn0scale` |
logical; if true, and |

Note that currently, when non-`NULL`

`weights`

are
specified, the default for initial location `mu`

and scale
`s`

is `wgt.himedian`

, where strictly speaking a
weighted “non-hi” median should be used for consistency.
Since `s`

is not updated, the results slightly differ, see the
examples below.

When `se = TRUE`

, the standard error is computed using the
`\tau`

correction factor but no finite sample correction.

list of location and scale parameters, and number of iterations used.

`mu` |
location estimate |

`s` |
the |

`it` |
the number of “Huber iterations” used. |

Martin Maechler, building on the MASS code mentioned.

Huber, P. J. (1981)
*Robust Statistics.*
Wiley.

`hubers`

(and `huber`

) in package MASS;
`mad`

.

```
huberM(c(1:9, 1000))
mad (c(1:9, 1000))
mad (rep(9, 100))
huberM(rep(9, 100))
## When you have "binned" aka replicated observations:
set.seed(7)
x <- c(round(rnorm(1000),1), round(rnorm(50, m=10, sd = 10)))
t.x <- table(x) # -> unique values and multiplicities
x.uniq <- as.numeric(names(t.x)) ## == sort(unique(x))
x.mult <- unname(t.x)
str(Hx <- huberM(x.uniq, weights = x.mult), digits = 7)
str(Hx. <- huberM(x, s = Hx$s, se=TRUE), digits = 7) ## should be ~= Hx
stopifnot(all.equal(Hx[-4], Hx.[-4]))
str(Hx2 <- huberM(x, se=TRUE), digits = 7)## somewhat different, since 's' differs
## Confirm correctness of std.error :
system.time(
SS <- replicate(10000, vapply(huberM(rnorm(400), se=TRUE), as.double, 1.))
) # ~ 12.2 seconds
rbind(mean(SS["SE",]), sd(SS["mu",]))# both ~ 0.0508
stopifnot(all.equal(mean(SS["SE",]),
sd ( SS["mu",]), tolerance= 0.002))
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.