adapt_delta | 'adapt_delta': Target average acceptance probability |
as.matrix.stanreg | Extract the posterior sample |
available-algorithms | Estimation algorithms available for 'rstanarm' models |
available-models | Modeling functions available in 'rstanarm' |
bayes_R2.stanreg | Compute a Bayesian version of R-squared or LOO-adjusted... |
example_jm | Example joint longitudinal and time-to-event model |
example_model | Example model |
family.stanmvreg | family method for stanmvreg objects |
family.stanreg | family method for stanreg objects |
formula.stanreg | formula method for stanreg objects |
get_y | Extract X, Y or Z from a stanreg object |
kfold.stanreg | K-fold cross-validation |
launch_shinystan.stanreg | Using the ShinyStan GUI with rstanarm models |
logit | Logit and inverse logit |
log_lik.stanreg | Pointwise log-likelihood matrix |
loo_predict.stanreg | Compute weighted expectations using LOO |
loo.stanreg | Information criteria and cross-validation |
model.frame.stanmvreg | model.frame method for stanmvreg objects |
model.frame.stanreg | model.frame method for stanreg objects |
model.matrix.stanreg | model.matrix method for stanreg objects |
neg_binomial_2 | Family function for negative binomial GLMs |
pairs.stanreg | Pairs method for stanreg objects |
plot.predict.stanjm | Plot the estimated subject-specific or marginal longitudinal... |
plot.stanreg | Plot method for stanreg objects |
plot.survfit.stanjm | Plot the estimated subject-specific or marginal survival... |
posterior_interval.stanreg | Posterior uncertainty intervals |
posterior_linpred.stanreg | Posterior distribution of the (possibly transformed) linear... |
posterior_predict.stanreg | Draw from posterior predictive distribution |
posterior_survfit | Estimate subject-specific or standardised survival... |
posterior_traj | Estimate the subject-specific or marginal longitudinal... |
posterior_vs_prior | Juxtapose prior and posterior |
pp_check.stanreg | Graphical posterior predictive checks |
pp_validate | Model validation via simulation |
predictive_error.stanreg | In-sample or out-of-sample predictive errors |
predictive_interval.stanreg | Predictive intervals |
predict.stanreg | Predict method for stanreg objects |
print.stanreg | Print method for stanreg objects |
print.survfit.stanjm | Generic print method for 'survfit.stanjm' objects |
priors | Prior distributions and options |
prior_summary.stanreg | Summarize the priors used for an rstanarm model |
ps_check | Graphical checks of the estimated survival function |
QR-argument | The 'QR' argument |
reexports | Objects exported from other packages |
rstanarm-datasets | Datasets for rstanarm examples |
rstanarm-deprecated | Deprecated functions |
rstanarm-package | Applied Regression Modeling via RStan |
se | Extract standard errors |
stan_betareg | Bayesian beta regression models via Stan |
stan_biglm | Bayesian regularized linear but big models via Stan |
stan_clogit | Conditional logistic (clogit) regression models via Stan |
stan_gamm4 | Bayesian generalized linear additive models with optional... |
stan_glm | Bayesian generalized linear models via Stan |
stan_glmer | Bayesian generalized linear models with group-specific terms... |
stan_jm | Bayesian joint longitudinal and time-to-event models via Stan |
stan_lm | Bayesian regularized linear models via Stan |
stan_mvmer | Bayesian multivariate generalized linear models with... |
stanmvreg-methods | Methods for stanmvreg objects |
stan_nlmer | Bayesian nonlinear models with group-specific terms via Stan |
stan_polr | Bayesian ordinal regression models via Stan |
stanreg-draws-formats | Create a 'draws' object from a 'stanreg' object |
stanreg_list | Create lists of fitted model objects, combine them, or append... |
stanreg-methods | Methods for stanreg objects |
stanreg-objects | Fitted model objects |
summary.stanreg | Summary method for stanreg objects |
terms.stanmvreg | terms method for stanmvreg objects |
terms.stanreg | terms method for stanreg objects |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.