pairs.stanreg | R Documentation |
Interface to bayesplot's
mcmc_pairs
function for use with
rstanarm models. Be careful not to specify too many parameters to
include or the plot will be both hard to read and slow to render.
## S3 method for class 'stanreg'
pairs(
x,
pars = NULL,
regex_pars = NULL,
condition = pairs_condition(nuts = "accept_stat__"),
...
)
x |
A fitted model object returned by one of the
rstanarm modeling functions. See |
pars |
An optional character vector of parameter names. All parameters are included by default, but for models with more than just a few parameters it may be far too many to visualize on a small computer screen and also may require substantial computing time. |
regex_pars |
An optional character vector of regular
expressions to use for parameter selection. |
condition |
Same as the |
... |
Optional arguments passed to
|
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
bayesplot::color_scheme_set("purple")
# see 'condition' argument above for details on the plots below and
# above the diagonal. default is to split by accept_stat__.
pairs(example_model, pars = c("(Intercept)", "log-posterior"))
# for demonstration purposes, intentionally fit a model that
# will (almost certainly) have some divergences
fit <- stan_glm(
mpg ~ ., data = mtcars,
iter = 1000,
# this combo of prior and adapt_delta should lead to some divergences
prior = hs(),
adapt_delta = 0.9,
refresh = 0
)
pairs(fit, pars = c("wt", "sigma", "log-posterior"))
# requires hexbin package
# pairs(
# fit,
# pars = c("wt", "sigma", "log-posterior"),
# transformations = list(sigma = "log"), # show log(sigma) instead of sigma
# off_diag_fun = "hex" # use hexagonal heatmaps instead of scatterplots
# )
bayesplot::color_scheme_set("brightblue")
pairs(
fit,
pars = c("(Intercept)", "wt", "sigma", "log-posterior"),
transformations = list(sigma = "log"),
off_diag_args = list(size = 3/4, alpha = 1/3), # size and transparency of scatterplot points
np_style = pairs_style_np(div_color = "black", div_shape = 2) # color and shape of the divergences
)
# Using the condition argument to show divergences above the diagonal
pairs(
fit,
pars = c("(Intercept)", "wt", "log-posterior"),
condition = pairs_condition(nuts = "divergent__")
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.