bayes_R2.stanreg | R Documentation |
Compute a Bayesian version of R-squared or LOO-adjusted R-squared for regression models.
## S3 method for class 'stanreg'
bayes_R2(object, ..., re.form = NULL)
## S3 method for class 'stanreg'
loo_R2(object, ...)
object |
A fitted model object returned by one of the
rstanarm modeling functions. See |
... |
Currently ignored. |
re.form |
For models with group-level terms, |
A vector of R-squared values with length equal to the posterior sample size (the posterior distribution of R-squared).
Andrew Gelman, Ben Goodrich, Jonah Gabry, and Aki Vehtari (2018). R-squared for Bayesian regression models. The American Statistician, to appear. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00031305.2018.1549100")} (Preprint, Notebook)
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
fit <- stan_glm(
mpg ~ wt + cyl,
data = mtcars,
QR = TRUE,
chains = 2,
refresh = 0
)
rsq <- bayes_R2(fit)
print(median(rsq))
hist(rsq)
loo_rsq <- loo_R2(fit)
print(median(loo_rsq))
# multilevel binomial model
if (!exists("example_model")) example(example_model)
print(example_model)
median(bayes_R2(example_model))
median(bayes_R2(example_model, re.form = NA)) # exclude group-level
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.