stan_betareg | R Documentation |
Beta regression modeling with optional prior distributions for the
coefficients, intercept, and auxiliary parameter phi
(if applicable).
stan_betareg(
formula,
data,
subset,
na.action,
weights,
offset,
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.phi = NULL,
model = TRUE,
y = TRUE,
x = FALSE,
...,
prior = normal(autoscale = TRUE),
prior_intercept = normal(autoscale = TRUE),
prior_z = normal(autoscale = TRUE),
prior_intercept_z = normal(autoscale = TRUE),
prior_phi = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE
)
stan_betareg.fit(
x,
y,
z = NULL,
weights = rep(1, NROW(x)),
offset = rep(0, NROW(x)),
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.phi = NULL,
...,
prior = normal(autoscale = TRUE),
prior_intercept = normal(autoscale = TRUE),
prior_z = normal(autoscale = TRUE),
prior_intercept_z = normal(autoscale = TRUE),
prior_phi = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE
)
formula , data , subset |
Same as | |||||||||||
na.action |
Same as | |||||||||||
link |
Character specification of the link function used in the model
for mu (specified through | |||||||||||
link.phi |
If applicable, character specification of the link function
used in the model for | |||||||||||
model , offset , weights |
Same as | |||||||||||
x , y |
In | |||||||||||
... |
Further arguments passed to the function in the rstan
package ( Another useful argument that can be passed to rstan via | |||||||||||
prior |
The prior distribution for the (non-hierarchical) regression coefficients. The default priors are described in the vignette
Prior
Distributions for rstanarm Models.
If not using the default,
See the priors help page for details on the families and
how to specify the arguments for all of the functions in the table above.
To omit a prior —i.e., to use a flat (improper) uniform prior—
Note: Unless | |||||||||||
prior_intercept |
The prior distribution for the intercept (after centering all predictors, see note below). The default prior is described in the vignette
Prior
Distributions for rstanarm Models.
If not using the default, Note: If using a dense representation of the design matrix
—i.e., if the | |||||||||||
prior_z |
Prior distribution for the coefficients in the model for
| |||||||||||
prior_intercept_z |
Prior distribution for the intercept in the model
for | |||||||||||
prior_phi |
The prior distribution for | |||||||||||
prior_PD |
A logical scalar (defaulting to | |||||||||||
algorithm |
A string (possibly abbreviated) indicating the
estimation approach to use. Can be | |||||||||||
adapt_delta |
Only relevant if | |||||||||||
QR |
A logical scalar defaulting to | |||||||||||
z |
For |
The stan_betareg
function is similar in syntax to
betareg
but rather than performing maximum
likelihood estimation, full Bayesian estimation is performed (if
algorithm
is "sampling"
) via MCMC. The Bayesian model adds
priors (independent by default) on the coefficients of the beta regression
model. The stan_betareg
function calls the workhorse
stan_betareg.fit
function, but it is also possible to call the
latter directly.
A stanreg object is returned
for stan_betareg
.
A stanfit object (or a slightly modified
stanfit object) is returned if stan_betareg.fit
is called directly.
Ferrari, SLP and Cribari-Neto, F (2004). Beta regression for modeling rates and proportions. Journal of Applied Statistics. 31(7), 799–815.
stanreg-methods
and
betareg
.
The vignette for stan_betareg
.
https://mc-stan.org/rstanarm/articles/
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
### Simulated data
N <- 200
x <- rnorm(N, 2, 1)
z <- rnorm(N, 2, 1)
mu <- binomial(link = "logit")$linkinv(1 + 0.2*x)
phi <- exp(1.5 + 0.4*z)
y <- rbeta(N, mu * phi, (1 - mu) * phi)
hist(y, col = "dark grey", border = FALSE, xlim = c(0,1))
fake_dat <- data.frame(y, x, z)
fit <- stan_betareg(
y ~ x | z, data = fake_dat,
link = "logit",
link.phi = "log",
algorithm = "optimizing" # just for speed of example
)
print(fit, digits = 2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.