Exploratory Analysis

knitr::opts_chunk$set(comment = "#")

```{css, echo=FALSE} .reveal .r code { white-space: pre; }

## Introduction

In this vignette, we would like to introduce how `qtable()` can be used
to easily create cross tabulations for exploratory data analysis.
`qtable()` is an extension of `table()` from base R and can do much
beyond creating two-way contingency tables. The function has a simple to
use interface while internally it builds layouts using the `rtables`
framework.

## Getting Started

Load packages used in this vignette:

```r
library(rtables)
library(dplyr)

Let's start by seeing what table() can do:

table(ex_adsl$ARM)
table(ex_adsl$SEX, ex_adsl$ARM)

We can easily recreate the cross-tables above with qtable() by specifying a data.frame with variable(s) to tabulate. The col_vars and row_vars arguments control how to split the data across columns and rows respectively.

qtable(ex_adsl, col_vars = "ARM")
qtable(ex_adsl, col_vars = "ARM", row_vars = "SEX")

Aside from the display style, the main difference is that qtable() will add (N=xx) in the table header by default. This can be removed with show_colcounts.

qtable(ex_adsl, "ARM", show_colcounts = FALSE)

Any variables used as the row or column facets should not have any empty strings (""). This is because non empty values are required as labels when generating the table. The code below will generate an error.

tmp_adsl <- ex_adsl
tmp_adsl$new <- rep_len(c("", "A", "B"), nrow(tmp_adsl))

qtable(tmp_adsl, row_vars = "new")

Nested Tables

Providing more than one variable name for the row or column structure in qtable() will create a nested table. Arbitrary nesting is supported in each dimension.

qtable(ex_adsl, row_vars = c("SEX", "STRATA1"), col_vars = c("ARM", "STRATA2"))

Note that by default, unobserved factor levels within a facet are not included in the table. This can be modified with drop_levels. The code below adds a row of 0s for STRATA1 level "B" nested under the SEX level "UNDIFFERENTIATED".

qtable(
  ex_adsl,
  row_vars = c("SEX", "STRATA1"),
  col_vars = c("ARM", "STRATA2"),
  drop_levels = FALSE
)

In contrast, table() cannot return a nested table. Rather it produces a list of contingency tables when more than two variables are used as inputs.

table(ex_adsl$SEX, ex_adsl$STRATA1, ex_adsl$ARM, ex_adsl$STRATA2)

With some help from stats::ftable() the nested structure can be achieved in two steps.

t1 <- ftable(ex_adsl[, c("SEX", "STRATA1", "ARM", "STRATA2")])
ftable(t1, row.vars = c("SEX", "STRATA1"))

NA Values

So far in all the examples we have seen, we used counts to summarize the data in each table cell as this is the default analysis used by qtable(). Internally, a single analysis variable specified by avar is used to generate the counts in the table. The default analysis variable is the first variable in data. In the case of ex_adsl this is "STUDYID".

Let's see what happens when we introduce some NA values into the analysis variable:

tmp_adsl <- ex_adsl
tmp_adsl[[1]] <- NA_character_

qtable(tmp_adsl, row_vars = "ARM", col_vars = "SEX")

The resulting table is showing 0's across all cells because all the values of the analysis variable are NA.

Keep this behavior in mind when doing quick exploratory analysis using the default counts aggregate function of qtable.

If this does not suit your purpose, you can either pre-process your data to re-code the NA values or use another analysis function. We will see how the latter is done in the [Custom Aggregation] section.

# Recode NA values
tmp_adsl[[1]] <- addNA(tmp_adsl[[1]])

qtable(tmp_adsl, row_vars = "ARM", col_vars = "SEX")

In addition, row and column variables should have NA levels explicitly labelled as above. If this is not done, the columns and/or rows will not reflect the full data.

tmp_adsl$new1 <- factor(NA_character_, levels = c("X", "Y", "Z"))
qtable(tmp_adsl, row_vars = "ARM", col_vars = "new1")

Explicitly labeling the NA levels in the column facet adds a column to the table:

tmp_adsl$new2 <- addNA(tmp_adsl$new1)
levels(tmp_adsl$new2)[4] <- "<NA>" # NA needs to be a recognizible string
qtable(tmp_adsl, row_vars = "ARM", col_vars = "new2")

Custom Aggregation

A powerful feature of qtable() is that the user can define the type of function used to summarize the data in each facet. We can specify the type of analysis summary using the afun argument:

qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = mean)

Note that the analysis variable AGE and analysis function name are included in the top right header of the table.

If the analysis function returns a vector of 2 or 3 elements, the result is displayed in multi-valued single cells.

qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = range)

If you want to use an analysis function with more than 3 summary elements, you can use a list. In this case, the values are displayed in the table as multiple stacked cells within each facet. If the list elements are named, the names are used as row labels.

fivenum2 <- function(x) {
  setNames(as.list(fivenum(x)), c("min", "Q1", "MED", "Q3", "max"))
}
qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = fivenum2)

More advanced formatting can be controlled with in_rows(). See function documentation for more details.

meansd_range <- function(x) {
  in_rows(
    "Mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)"),
    "Range" = rcell(range(x), format = "xx - xx")
  )
}

qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = meansd_range)

Marginal Summaries

Another feature of qtable() is the ability to quickly add marginal summary rows with the summarize_groups argument. This summary will add to the table the count of non-NA records of the analysis variable at each level of nesting. For example, compare these two tables:

qtable(
  ex_adsl,
  row_vars = c("STRATA1", "STRATA2"), col_vars = "ARM",
  avar = "AGE", afun = mean
)

qtable(
  ex_adsl,
  row_vars = c("STRATA1", "STRATA2"), col_vars = "ARM",
  summarize_groups = TRUE, avar = "AGE", afun = mean
)

In the second table, there are marginal summary rows for each level of the two row facet variables: STRATA1 and STRATA2. The number 18 in the second row gives the count of observations part of ARM level "A: Drug X", STRATA1 level "A", and STRATA2 level "S1". The percent is calculated as the cell count divided by the column count given in the table header. So we can see that the mean AGE of 31.61 in that subgroup is based on 18 subjects which correspond to 13.4% of the subjects in arm "A: Drug X".

See ?summarize_row_groups for how to add marginal summary rows when using the core rtables framework.

Table Decorations

Tables generated with qtable() can include annotations such as titles, subtitles and footnotes like so:

qtable(
  ex_adsl,
  row_vars = "STRATA2", col_vars = "ARM",
  title = "Strata 2 Summary",
  subtitle = paste0("STUDY ", ex_adsl$STUDYID[1]),
  main_footer = paste0("Date: ", as.character(Sys.Date()))
)

Summary

Here is what we have learned in this vignette:

As the intended use of qtable() is for exploratory data analysis, there is limited functionality for building very complex tables. For details on how to get started with the core rtables layout functionality see the introduction vignette.



Try the rtables package in your browser

Any scripts or data that you put into this service are public.

rtables documentation built on June 27, 2024, 9:06 a.m.