Nothing
#' @title Bi-parted Spectral Clustering. Shi and Malik.
#' @author Emilie Poisson Caillault and Erwan Vincent
#' @description Bi-parted spectral clustering based on Shi and Malik algorithm, which separates the data into two distinct clusters
#' @param W Gram Similarity Matrix.
#' @param flagDiagZero if True, Put zero on the similarity matrix W.
#' @param verbose To output the verbose in the terminal.
#' @return returns a list containing the following elements:
#' \itemize{
#' \item{cluster: }{a vector containing the cluster}
#' \item{eigenVect: }{a vector containing the eigenvectors}
#' \item{eigenVal: }{a vector containing the eigenvalues}
#' }
#' @references Shi, J and Malik, J. (2000). Normalized cuts and image segmentation. In PAMI, Transactions on Pattern Analysis and Machine Intelligence, pages 888-905
#' @examples
#' ### Example 1: 2 disks of the same size
#' n<-100 ; r1<-1
#' x<-(runif(n)-0.5)*2;
#' y<-(runif(n)-0.5)*2
#' keep1<-which((x*2+y*2)<(r1*2))
#' disk1<-data.frame(x+3*r1,y)[keep1,]
#' disk2 <-data.frame(x-3*r1,y)[keep1,]
#' sameTwoDisks <- rbind(disk1,disk2)
#' W <- compute.similarity.ZP(scale(sameTwoDisks))
#' res <- ShiMalikSC(W,flagDiagZero=TRUE,verbose=FALSE)
#' plot(sameTwoDisks, col = res$cluster)
#' plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
#' xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
#' plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
#'
#' ### Example 2: Speed and Stopping Distances of Cars
#' W <- compute.similarity.ZP(scale(iris[,-5]))
#' res <- ShiMalikSC(W,flagDiagZero=TRUE,verbose=TRUE)
#' plot(iris, col = res$cluster)
#' plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
#' xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
#' plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
ShiMalikSC <- function(W, flagDiagZero=FALSE, verbose = FALSE){
#Checking the similarity matrix
W <- checking.gram.similarityMatrix(W, flagDiagZero=flagDiagZero, verbose = verbose)
#Calculation of the degree matrix
if(verbose){message("CALCULATION OF THE DEGREE MATRIX")}
degrees <- rowSums(W)
Ds <- diag(1/sqrt(degrees))
#Calculation of the Laplacian matrix
if(verbose){message("CALCULATION OF THE LAPLACIAN MATRIX")}
L2 <- diag(1,nrow(Ds)) - Ds %*% W %*% Ds
#Calculation of the eigen vectors and values
if(verbose){message("CALCULATION OF THE EIGEN VECTORS AND VALUES")}
U <- eigen(L2, symmetric=TRUE)
if(verbose){
message("EIGEN VALUES = ")
print(U$values)
message("EIGEN VECTOR = ")
print(U$vector)
}
#Recuperation of the second smallest eigenvector
if(verbose){message("GETTING THE SECOND SMALLEST EIGENVECTOR")}
V <- U$vectors[, ncol(L2)-1]
if(verbose){print(V)}
print(V)
#Calculation of the weight vector
if(verbose){message("CALCULATION OF THE WEIGHT VECTOR")}
g <- as.matrix(sort(Ds %*% V, decreasing = TRUE))
if(verbose){cat("g = ",g,"\n")}
#Calculation of the cluster
if(verbose){message("CALCULATION OF THE CLUSTER")}
cluster <- apply(as.matrix(g), MARGIN = 1, FUN = function(x) if(x>=0){x=1}else{x=2})
if(verbose){print(cluster)}
out <- list(cluster = cluster, eigenVect = U$vector, eigenVal = U$values)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.