View source: R/func_discreteVPC.R
discreteVPC | R Documentation |
This function provides VPC plots for non Gaussian data models (work in progress)
discreteVPC(object, outcome = "categorical", verbose = FALSE, ...)
object |
an saemixObject object returned by the |
outcome |
type of outcome (valid types are "TTE", "binary", "categorical", "count") |
verbose |
whether to print messages (defaults to FALSE) |
... |
additional arguments, used to pass graphical options (to be implemented, currently not available) |
This function is a very rough first attempt at automatically creating VPC plots for models defined through their log-likelihood (categorical, count, or TTE data). It makes use of the new element simulate.function in the model component of the object
for TTE data, a KM-VPC plot will be produced
for count, categorical and binary data, a plot showing the proportion of each score/category across time will be shown along with the corresponding prediction intervals from the model These plots can be stratified over a covariate in the data set (currently only categorical covariates) by passing an argument which.cov='name' to the call
Emmanuelle Comets emmanuelle.comets@inserm.fr
Brendel, K, Comets, E, Laffont, C, Laveille, C, Mentre, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide, Pharmaceutical Research 23 (2006), 2036-2049.
Holford, N. The Visual Predictive Check: superiority to standard diagnostic (Rorschach) plots (Abstract 738), in: 14th Meeting of the Population Approach Group in Europe, Pamplona, Spain, 2005.
Ron Keizer, tutorials on VPC TODO
SaemixObject
, saemix
,
saemix.plot.vpc
, simulateDiscreteSaemix
data(lung.saemix)
saemix.data<-saemixData(name.data=lung.saemix,header=TRUE,name.group=c("id"),
name.predictors=c("time","status","cens"),name.response=c("status"),
name.covariates=c("age", "sex", "ph.ecog", "ph.karno", "pat.karno", "wt.loss","meal.cal"),
units=list(x="days",y="",covariates=c("yr","","-","%","%","cal","pounds")))
weibulltte.model<-function(psi,id,xidep) {
T<-xidep[,1]
y<-xidep[,2] # events (1=event, 0=no event)
cens<-which(xidep[,3]==1) # censoring times (subject specific)
init <- which(T==0)
lambda <- psi[id,1] # Parameters of the Weibull model
beta <- psi[id,2]
Nj <- length(T)
ind <- setdiff(1:Nj, append(init,cens)) # indices of events
hazard <- (beta/lambda)*(T/lambda)^(beta-1) # H'
H <- (T/lambda)^beta # H
logpdf <- rep(0,Nj) # ln(l(T=0))=0
logpdf[cens] <- -H[cens] + H[cens-1] # ln(l(T=censoring time))
logpdf[ind] <- -H[ind] + H[ind-1] + log(hazard[ind]) # ln(l(T=event time))
return(logpdf)
}
simulateWeibullTTE <- function(psi,id,xidep) {
T<-xidep[,1]
y<-xidep[,2] # events (1=event, 0=no event)
cens<-which(xidep[,3]==1) # censoring times (subject specific)
init <- which(T==0)
lambda <- psi[,1] # Parameters of the Weibull model
beta <- psi[,2]
tevent<-T
Vj<-runif(dim(psi)[1])
tsim<-lambda*(-log(Vj))^(1/beta) # nsuj events
tevent[T>0]<-tsim
tevent[tevent[cens]>T[cens]] <- T[tevent[cens]>T[cens]]
return(tevent)
}
saemix.model<-saemixModel(model=weibulltte.model,description="time model",modeltype="likelihood",
simulate.function = simulateWeibullTTE,
psi0=matrix(c(1,2),ncol=2,byrow=TRUE,dimnames=list(NULL, c("lambda","beta"))),
transform.par=c(1,1),covariance.model=matrix(c(1,0,0,0),ncol=2, byrow=TRUE))
saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE, displayProgress=FALSE)
tte.fit<-saemix(saemix.model,saemix.data,saemix.options)
simtte.fit <- simulateDiscreteSaemix(tte.fit, nsim=100)
gpl <- discreteVPC(simtte.fit, outcome="TTE")
plot(gpl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.