Nothing
.sbwcaufix = function(dat, ind, out, bal, wei, sol, par) {
if (is(dat[, ind], "factor")) {
dat[, ind] = as.numeric(as.character(dat[, ind]))
}
if (sum(dat[, ind] != 1 & dat[, ind] != 0) > 0)
stop(paste("Please input a binary or a logical variable for \"", ind, "\".", sep = ""))
# Transform from factor to numeric
fac_ind = sapply(dat, is.factor)
dat[fac_ind] = lapply(dat[fac_ind], function(x) as.numeric(as.character(x)))
# Preprocess for cate
if(par$par_est %in% c("cate","pop")) {
# Calculate target
if (is(par$par_tar, "character")) {
dat = subset(dat, eval(parse(text = par$par_tar)))
bal$bal_tar = colMeans(as.matrix(dat[, bal$bal_cov]))
} else if (is(par$par_tar, "numeric")) {
if (sum(fac_ind) >= 1) {
dat = dat[apply(dat[fac_ind] == par$par_tar[match(names(fac_ind), names(par$par_tar))][fac_ind], 1, prod, na.rm = TRUE) %in% 1,]
}
bal$bal_tar = par$par_tar
} else if (is(par$par_tar, "NULL")) {
bal$bal_tar = colMeans(as.matrix(dat[, bal$bal_cov]))
}
}
if (sum(dat[ ,ind] == 0) == 0) {
stop("Positivity is not satisfied.")
}
if (sum(dat[ ,ind] == 1) == 0) {
stop("Positivity is not satisfied.")
}
# Order dat by ind
ord = order(dat[, ind], decreasing = FALSE)
dat = dat[ord, ]
# Divide dat into list of data frames by levels of ind
dat_level = by(dat, dat[, ind], function(x) x)
if (par$par_est %in% c("ate", "cate")) {
# Calculate target
if (par$par_est %in% "ate") bal$bal_tar = colMeans(as.matrix(dat[, bal$bal_cov]))
sd_target = apply(as.matrix(dat[, bal$bal_cov]), 2, sd)
sbwfix_level = lapply(dat_level, .sbwauxfix, bal = bal, wei = wei, sol = sol, sd_target = sd_target)
# Get weights
weights = lapply(sbwfix_level, function(x) x$dat_weights$sbw_weights)
# Calculate effective sample size
effective_sample_size = lapply(weights, function(x) sum(x)^2/sum(x^2))
# Update the outputs
weights = unlist(weights)
objective_value = lapply(sbwfix_level, function(x) x$objective_value)
time = lapply(sbwfix_level, function(x) x$time)
status = lapply(sbwfix_level, function(x) x$status)
shadow_price = lapply(sbwfix_level, function(x) x$shadow_price)
balance_parameters = lapply(sbwfix_level, function(x) x$balance_parameters)
} else if (par$par_est %in% c("att", "atc", "pop")) {
if (par$par_est %in% "att") {
# Calculate target
bal$bal_tar = colMeans(as.matrix(dat[which(dat[, ind] == 1), bal$bal_cov]))
sd_target = apply(as.matrix(dat[which(dat[, ind] == 1), bal$bal_cov]), 2, sd)
sbwfix_level = .sbwauxfix(dat_level[[1]], bal = bal, wei = wei, sol = sol, sd_target = sd_target)
# Get weights
weights = sbwfix_level$dat_weights$sbw_weights
# Calculate effective sample size
effective_sample_size = sum(weights)^2/sum(weights^2)
# Update the data frame
weights = c(weights, rep(1/(nrow(dat) - length(weights)), nrow(dat) - length(weights)))
} else if (par$par_est %in% "atc") {
bal$bal_tar = colMeans(as.matrix(dat[which(dat[, ind] == 0), bal$bal_cov]))
sd_target = apply(as.matrix(dat[which(dat[, ind] == 0), bal$bal_cov]), 2, sd)
sbwfix_level = .sbwauxfix(dat_level[[2]], bal = bal, wei = wei, sol = sol, sd_target = sd_target)
# Get weights
weights = sbwfix_level$dat_weights$sbw_weights
# Calculate effective sample size
effective_sample_size = sum(weights)^2/sum(weights^2)
# Update the data frame
weights = c(rep(1/(nrow(dat) - length(weights)), nrow(dat) - length(weights)), weights)
} else if (par$par_est %in% "pop") {
sd_target = apply(as.matrix(dat[, bal$bal_cov]), 2, sd)
sbwfix_level = .sbwauxfix(dat_level[[1]], bal = bal, wei = wei, sol = sol, sd_target = sd_target)
# Get weights
weights = sbwfix_level$dat_weights$sbw_weights
# Calculate effective sample size
effective_sample_size = sum(weights)^2/sum(weights^2)
# Update the data frame
weights = c(weights, rep(0, nrow(dat) - length(weights)))
}
# Update the outputs
objective_value = sbwfix_level$objective_value
time = sbwfix_level$time
status = sbwfix_level$status
shadow_price = sbwfix_level$shadow_price
balance_parameters = sbwfix_level$balance_parameters
}
# Update the data frame
dat_weights = dat
dat_weights$sbw_weights = weights
dat_weights = dat_weights[order(ord), ]
dat_weights[fac_ind] = lapply(dat_weights[fac_ind], function(x) as.factor(x))
output = list(ind = ind, out = out, bal = bal, objective_value = objective_value, effective_sample_size = effective_sample_size, time = time, status = status, dat_weights = dat_weights, shadow_price = shadow_price, balance_parameters = balance_parameters, par = par)
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.