Nothing
#' Prior distributions
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' Optional priors/penalties on model parameters. This results in penalized
#' likelihood within TMB or can be used as priors if the model is passed to
#' \pkg{tmbstan} (see the Bayesian vignette).
#'
#' **Note that Jacobian adjustments are only made if `bayesian = TRUE`** when the
#' [sdmTMB()] model is fit. I.e., the final model will be fit with \pkg{tmbstan}
#' and priors are specified then `bayesian` should be set to `TRUE`. Otherwise,
#' leave `bayesian = FALSE`.
#'
#' @details
#' Meant to be passed to the `priors` argument in [sdmTMB()].
#'
#' @details
#' `normal()` and `halfnormal()` define normal and half-normal priors that, at
#' this point, must have a location (mean) parameter of 0. `halfnormal()` is the
#' same as `normal()` but can be used to make the syntax clearer. It is intended
#' to be used for parameters that have support `> 0`.
#'
#' @details
#' See \url{https://arxiv.org/abs/1503.00256} for a description of the
#' PC prior for Gaussian random fields. Quoting the discussion (and substituting
#' the argument names in `pc_matern()`):
#' "In the simulation study we observe good coverage of the equal-tailed 95%
#' credible intervals when the prior satisfies `P(sigma > sigma_lt) = 0.05` and
#' `P(range < range_gt) = 0.05`, where `sigma_lt` is between 2.5 to 40 times
#' the true marginal standard deviation and `range_gt` is between 1/10 and 1/2.5
#' of the true range."
#'
#' @details
#' Keep in mind that the range is dependent on the units and scale of the
#' coordinate system. In practice, you may choose to try fitting the model
#' without a PC prior and then constraining the model from there. A better
#' option would be to simulate from a model with a given range and sigma to
#' choose reasonable values for the system or base the prior on knowledge from a
#' model fit to a similar system but with more spatial information in the data.
#'
#' @references
#' Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2016) Constructing
#' Priors that Penalize the Complexity of Gaussian Random Fields.
#' arXiv:1503.00256
#'
#' Simpson, D., Rue, H., Martins, T., Riebler, A., and Sørbye, S. (2015)
#' Penalising model component complexity: A principled, practical approach to
#' constructing priors. arXiv:1403.4630
#'
#' @param matern_s A PC (Penalized Complexity) prior (`pc_matern()`) on the
#' spatial random field Matérn parameters.
#' @param matern_st Same as `matern_s` but for the spatiotemporal random field.
#' Note that you will likely want to set `share_fields = FALSE` if you choose
#' to set both a spatial and spatiotemporal Matérn PC prior since they both
#' include a prior on the spatial range parameter.
#' @param phi A `halfnormal()` prior for the dispersion parameter in the
#' observation distribution.
#' @param ar1_rho A `normal()` prior for the AR1 random field parameter. Note
#' the parameter has support `-1 < ar1_rho < 1`.
#' @param tweedie_p A `normal()` prior for the Tweedie power parameter. Note the
#' parameter has support `1 < tweedie_p < 2` so choose a mean appropriately.
#' @param b `normal()` priors for the main population-level 'beta' effects.
#' @param sigma_G `halfnormal()` priors for the random intercept SDs.
#'
#' @rdname priors
#'
#' @return
#' A named list with values for the specified priors.
#'
#' @export
sdmTMBpriors <- function(
matern_s = pc_matern(range_gt = NA, sigma_lt = NA),
matern_st = pc_matern(range_gt = NA, sigma_lt = NA),
phi = halfnormal(NA, NA),
ar1_rho = normal(NA, NA),
tweedie_p = normal(NA, NA),
b = normal(NA, NA),
sigma_G = halfnormal(NA, NA)
) {
assert_that(attr(matern_s, "dist") == "pc_matern")
assert_that(attr(matern_st, "dist") == "pc_matern")
assert_that(attr(phi, "dist") == "normal")
assert_that(attr(sigma_G, "dist") == "normal")
assert_that(attr(tweedie_p, "dist") == "normal")
assert_that(attr(b, "dist") %in% c("normal", "mvnormal"))
list(
matern_s = matern_s,
matern_st = matern_st,
phi = phi,
ar1_rho = ar1_rho,
tweedie_p = tweedie_p,
b = b,
sigma_G = sigma_G
)
}
#' @param location Location parameter(s).
#' @param scale Scale parameter. For `normal()`/`halfnormal()`: standard
#' deviation(s). For `mvnormal()`: variance-covariance matrix.
#' @export
#' @rdname priors
#' @examples
#' normal(0, 1)
normal <- function(location = 0, scale = 1) {
assert_that(all(scale[!is.na(scale)] > 0))
assert_that(length(location) == length(scale))
assert_that(sum(is.na(location)) == sum(is.na(scale)))
x <- matrix(c(location, scale), ncol = 2L)
`attr<-`(x, "dist", "normal")
}
#' @export
#' @rdname priors
#' @examples
#' halfnormal(0, 1)
halfnormal <- function(location = 0, scale = 1) {
normal(location, scale)
}
#' @export
#' @rdname priors
#' @examples
#' mvnormal(c(0, 0))
mvnormal <- function(location = 0, scale = diag(length(location))) {
assert_that(length(location) == dim(scale)[1])
# return single matrix, where first col = locations, rest = Sigma
x <- cbind(as.matrix(location,ncol=1), scale)
`attr<-`(x, "dist", "mvnormal")
}
#' @param range_gt A value one expects the spatial or spatiotemporal range is
#' **g**reater **t**han with `1 - range_prob` probability.
#' @param sigma_lt A value one expects the spatial or spatiotemporal marginal
#' standard deviation (`sigma_O` or `sigma_E` internally) is **l**ess **t**han
#' with `1 - sigma_prob` probability.
#' @param range_prob Probability. See description for `range_gt`.
#' @param sigma_prob Probability. See description for `sigma_lt`.
#' @export
#' @rdname priors
#'
#' @seealso
#' [plot_pc_matern()]
#'
#' @description
#' `pc_matern()` is the Penalized Complexity prior for the Matern
#' covariance function.
#'
#' @examples
#' pc_matern(range_gt = 5, sigma_lt = 1)
#' plot_pc_matern(range_gt = 5, sigma_lt = 1)
#'
#' \donttest{
#' d <- subset(pcod, year > 2011)
#' pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 30)
#'
#' # - no priors on population-level effects (`b`)
#' # - halfnormal(0, 10) prior on dispersion parameter `phi`
#' # - Matern PC priors on spatial `matern_s` and spatiotemporal
#' # `matern_st` random field parameters
#' m <- sdmTMB(density ~ s(depth, k = 3),
#' data = d, mesh = pcod_spde, family = tweedie(),
#' share_range = FALSE, time = "year",
#' priors = sdmTMBpriors(
#' phi = halfnormal(0, 10),
#' matern_s = pc_matern(range_gt = 5, sigma_lt = 1),
#' matern_st = pc_matern(range_gt = 5, sigma_lt = 1)
#' )
#' )
#'
#' # - no prior on intercept
#' # - normal(0, 1) prior on depth coefficient
#' # - no prior on the dispersion parameter `phi`
#' # - Matern PC prior
#' m <- sdmTMB(density ~ depth_scaled,
#' data = d, mesh = pcod_spde, family = tweedie(),
#' spatiotemporal = "off",
#' priors = sdmTMBpriors(
#' b = normal(c(NA, 0), c(NA, 1)),
#' matern_s = pc_matern(range_gt = 5, sigma_lt = 1)
#' )
#' )
#'
#' # You get a prior, you get a prior, you get a prior!
#' # (except on the annual means; see the `NA`s)
#' m <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),
#' data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"),
#' share_range = FALSE, spatiotemporal = "AR1",
#' priors = sdmTMBpriors(
#' b = normal(c(0, 0, NA, NA, NA), c(2, 2, NA, NA, NA)),
#' phi = halfnormal(0, 10),
#' # tweedie_p = normal(1.5, 2),
#' ar1_rho = normal(0, 1),
#' matern_s = pc_matern(range_gt = 5, sigma_lt = 1),
#' matern_st = pc_matern(range_gt = 5, sigma_lt = 1))
#' )
#' }
pc_matern <- function(range_gt, sigma_lt, range_prob = 0.05, sigma_prob = 0.05) {
assert_that(range_prob > 0 && range_prob < 1)
assert_that(sigma_prob > 0 && sigma_prob < 1)
if (!is.na(range_gt)) assert_that(range_gt > 0)
if (!is.na(sigma_lt)) assert_that(sigma_lt > 0)
if (!is.na(range_gt)) assert_that(!is.na(sigma_lt))
if (!is.na(sigma_lt)) assert_that(!is.na(range_gt))
x <- c(range_gt, sigma_lt, range_prob, sigma_prob)
`attr<-`(x, "dist", "pc_matern")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.