Description Usage Arguments Value References Examples
Takes vectors of time, temperature, growth rate and δ18O
of the fluid and converts them into a δ18O and
Δ47 record. The δ18O and
Δ47 values are calculated for every depth value provided
in the D
vector. By default, the empirical transfer function by Kim
and O'Neil (1997) is used to produce the δ18O record, but
other transfer functions (e.g. Grossman and Ku, 1986) are also supported. The
default transfer function for converting temperature data to
Δ47 data is based on Bernasconi et al. (2018), but other
transfer functions (e.g. Jautzy et al., 2020) are also supported.
1 2 3 4 5 6 7 8 9 10 11 |
time |
Time vector (values in years) |
SST |
A vector containing temperature data (values in degrees C; length
must be equal to that of |
GR |
Growth rate vector (values in same time unit as |
d18Ow |
A vector containing data on the δ18O value of
the precipitation fluid (values in permille VSMOW; length must be equal to
that of |
D |
Depth vector (values in same depth unit as |
d18O_fun |
String containing the name of the transfer function used to
convert temperature and δ18Ow to
δ18Oc data (for example: |
D47_fun |
String containing the name of the transfer function used to
convert temperature to Δ47 data (for example:
|
AV |
Should the subsampling take into account the mean value within the
sample interval? |
plot |
Should the result be plotted? |
A matrix containing subsampled time, depth,
δ18Oc and Δ47 values:
"Tnew"
): New time vector after subsampling
"D"
): New depth vector after subsampling
"d18Oc"
): Vector listing δ18Oc values for each
sample
"D47"
): Vector listing Δ47 values for each sample
package dependencies: ggplot2, gridExtra function dependencies: subsample, subsample_mean Grossman, E.L., Ku, T., Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects, Chemical Geology 1986, 59.1, 59–74. https://doi.org/bvpzws
Kim, S., O'Niel, J.R., Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochimica et Cosmochimica Acta 1997, 61.16, 3461–3475. https://doi.org/c7bwbp
Dettman, D.L., Reische, A.K., Lohmann, K.C., Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh–water bivalves (Unionidae), Geochimica et Cosmochimica Acta 1999, 63.7–8, 1049–1057. https://doi.org/cbb7zc
Brand, W.A., Coplen, T.B., Vogl, J., Rosner, M., Prohaska, T., Assessment of international reference materials for isotope–ratio analysis (IUPAC Technical Report), Pure and Applied Chemistry 2014, 86.3, 425–467. https://doi.org/fpc2
Kele, S., Breitenbach, S. F., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K. and John, C. M., Temperature dependence of oxygen– and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 C temperature range, Geochimica et Cosmochimica Acta 2015, 168, 172–192. https://doi.org/f7sgn6
Bernasconi, S.M., Müller, I.A., Bergmann, K.D., Breitenbach, S.F., Fernandez, A., Hodell, D.A., Jaggi, M., Meckler, A.N., Millan, I. and Ziegler, M., Reducing uncertainties in carbonate–clumped isotope analysis through consistent carbonate based standardization. Geochemistry, Geophysics, Geosystems 2018, 19–9, 2895–2914. https://doi.org/gfmjrw
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge, T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S. F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A., Kele, S., Lohmann, K. C., Passey, B. H., Peral, M. Y., Petrizzo, D. A., Rosenheim, B. E., Tripati, A., Venturelli, R., Young, E. D. and Winkelstern, I. Z., Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral–Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation, Geochemistry, Geophysics, Geosystems *2019, 20–7, 3495–3519. https://doi.org/ggrc39
Jautzy, J. J., Savard, M. M., Dhillon, R. S., Bernasconi, S. M. and Smirnoff, A., Clumped isotope temperature calibration for calcite: Bridging theory and experimentation, Geochemical Perspectives Letters 2020, 14, 36–41. https://doi.org/fpc3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # Create test data (= ideal case)
# Set boundary conditions
Td <- seq(1, 12 * 365, 1) # Create timeline of 12 years in days
Ty <- Td / 365 # Convert to years
MAT <- 20 # Set mean annual temperature
Amp <- 10 # Set seasonal amplitude
Sext <- 2 * Amp # Calculate extent of seasonal variability
TSD <- 1.5 # Set the degree of random non–seasonal noise on the SST curve
# ("weather")
SST <- rnorm(length(Ty), MAT + Amp * sin(2 * pi * Ty), TSD) # Create virtual
# daily SST data
GR <- rep(10 / 365, length(Ty)) # Set growth rate to 10 mm/yr and create daily
# GR vector
DSD <- 0.6 # Set the degree of random non–seasonal noise on the d18Osw curve
# ("salinity fluctuations")
d18Osw<-rnorm(length(Ty), rep(0, length(Ty)), DSD) # Set d18Osw to 0 permille
# VSMOW, create daily d18Osw vector
SR <- 0.75 # Set sampling resolution to 0.75 mm
# Create vector for all samples along entire shell length by applying constant
# sampling resolution
D <- seq(SR, sum(GR), SR)
# Calculate virtual data
newdata <- carbmodel(Ty, SST, GR, d18Osw, D, AV = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.