Description Usage Arguments Value References See Also Examples
A collection of method to validate the goodness of the model. Since there is no well identified global optimization criterion each part of the model needs to be validated.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | rSquared(object, ...)
## S3 method for class 'sempls'
rSquared(object, na.rm=FALSE, ...)
## S3 method for class 'rSquared'
print(x, na.print=".", digits=2, ...)
qSquared(object, ...)
## S3 method for class 'sempls'
qSquared(object, d=NULL, impfun, dlines=TRUE,
total=FALSE, ...)
## S3 method for class 'qSquared'
print(x, na.print=".", digits=2, ...)
dgrho(object, ...)
## S3 method for class 'sempls'
dgrho(object, ...)
## S3 method for class 'dgrho'
print(x, na.print=".", digits=2, ...)
communality(object, ...)
## S3 method for class 'sempls'
communality(object, ...)
## S3 method for class 'communality'
print(x, na.print=".", digits=2, ...)
redundancy(object, ...)
## S3 method for class 'sempls'
redundancy(object, ...)
## S3 method for class 'redundancy'
print(x, na.print=".", digits=2, ...)
rSquared2(object, ...)
## S3 method for class 'sempls'
rSquared2(object, na.rm=FALSE, ...)
## S3 method for class 'rSquared2'
print(x, na.print=".", digits=2, ...)
gof(object, ...)
## S3 method for class 'sempls'
gof(object, ...)
## S3 method for class 'gof'
print(x, na.print=".", digits=2, ...)
|
object |
An object of class |
d |
A |
impfun |
An user specified function to impute missing values. |
dlines |
If |
total |
If |
na.rm |
If |
x |
An object of the according class. |
na.print |
A |
digits |
minimal number of _significant_ digits, see |
... |
Arguments to be passed down. |
Most GOF methods return a column vector with the names of the variables as rows and the respective measure as column.
Esposito Vinzi V., Trinchera L., Amato S. (2010). PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In Esposito Vinzi V., Chin W.W., Henseler J., Wang H.F. (eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications in Marketing and Related Fields, chapter 2. Springer-Verlag Berlin Heidelberg.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | data(ECSImobi)
ecsi <- sempls(model=ECSImobi, data=mobi, E="C")
### R-squared
rSquared(ecsi)
### Q-squared with omission distance d=4
qSquared(ecsi, d=4)
### Dillon-Goldstein's rho (aka composite reliability)
dgrho(ecsi)
### Communalities
communality(ecsi)
### Redundancy
redundancy(ecsi)
### R-squared (normal + corrected)
rSquared2(ecsi)
### Goodness of fit
gof(ecsi)
### check for discriminant validity using loadings
l <-plsLoadings(ecsi)
print(l, type="discriminant", cutoff=0.5, reldiff=0.2)
|
Loading required package: lattice
All 250 observations are valid.
Converged after 6 iterations.
Tolerance: 1e-07
Scheme: centroid
R-squared
Image .
Expectation 0.25
Quality 0.31
Value 0.34
Satisfaction 0.68
Complaints 0.28
Loyalty 0.46
Q-Squared
Image .
Expectation 0.11
Quality 0.17
Value 0.28
Satisfaction 0.46
Complaints 0.26
Loyalty 0.21
Dillon-Goldstein's rho reflective MVs
Image 0.82 5
Expectation 0.73 3
Quality 0.90 7
Value 0.92 2
Satisfaction 0.87 3
Complaints . 1
Loyalty 0.72 3
communality reflective MVs
Image 0.48 5
Expectation 0.48 3
Quality 0.58 7
Value 0.85 2
Satisfaction 0.69 3
Complaints . 1
Loyalty 0.52 3
Average communality: 0.57
redundancy
Image .
Expectation 0.12
Quality 0.18
Value 0.29
Satisfaction 0.47
Complaints .
Loyalty 0.24
Average redundancy: 0.26
R-squared R-squared-corrected predecessors
Image . . 0
Expectation 0.25 0.25 1
Quality 0.31 0.31 1
Value 0.34 0.34 2
Satisfaction 0.68 0.68 4
Complaints 0.28 0.27 1
Loyalty 0.46 0.45 3
Average R-squared: 0.39
Value
Average R-squared 0.39
Average Communality 0.57
GoF 0.47
Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.74 . . . . . .
IMAG2 0.60 . . . . . .
IMAG3 0.58 . . . . . .
IMAG4 0.77 . . . . . .
IMAG5 0.74 . . . . . .
CUEX1 . 0.77 . . . . .
CUEX2 . 0.69 . . . . .
CUEX3 . 0.61 . . . . .
PERQ1 . . 0.80 . 0.68 . .
PERQ2 . . 0.64 . . . .
PERQ3 0.63 . 0.78 . 0.64 . .
PERQ4 . . 0.77 . . . .
PERQ5 0.61 . 0.76 . . . .
PERQ6 . . 0.78 . . . .
PERQ7 . . 0.78 . 0.70 . .
PERV1 . . . 0.90 . . .
PERV2 . . . 0.94 . . .
CUSA1 . . 0.64 . 0.80 . .
CUSA2 . . . . 0.85 . .
CUSA3 . . . . 0.85 . .
CUSCO . . . . . 1.00 .
CUSL1 . . . . . . 0.81
CUSL2 . . . . . . .
CUSL3 . . . . . . 0.92
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.