Description Usage Arguments Value See Also Examples
sempls
fits structural equation models by the patial least
squares (PLS) method. The estimation is based on the raw data and
requires no distributional assumptions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | sempls(model, ...)
## S3 method for class 'plsm'
sempls(model, data, maxit=20, tol=1e-7,
scaled=TRUE, sum1=FALSE, wscheme="centroid", pairwise=FALSE,
method=c("pearson", "kendall", "spearman"),
convCrit=c("relative", "square"),
verbose=TRUE, ...)
## S3 method for class 'sempls'
print(x, digits=2, ...)
## S3 method for class 'sempls'
plot(x, ...)
## S3 method for class 'sempls'
densityplot(x, data, use=c("fscores", "prediction",
"residuals"), ...)
pathCoeff(object, ...)
## S3 method for class 'sempls'
pathCoeff(object, ...)
## S3 method for class 'pathCoeff'
print(x, na.print=".", digits=2, abbreviate=FALSE, ...)
totalEffects(object)
## S3 method for class 'sempls'
totalEffects(object)
## S3 method for class 'totalEffects'
print(x, na.print=".", digits=2, abbreviate=FALSE,...)
plsWeights(object)
## S3 method for class 'sempls'
plsWeights(object)
## S3 method for class 'plsWeights'
print(x, na.print=".", digits=2, abbreviate=FALSE, ...)
plsLoadings(object)
## S3 method for class 'sempls'
plsLoadings(object)
## S3 method for class 'plsLoadings'
print(x, type=c("discriminant", "outer", "cross"),
cutoff=NULL, reldiff=0.2, na.print=".", digits=2, abbreviate=FALSE, ...)
|
model |
An object inheriting from class |
... |
Arguments to be passed down. |
data |
A |
maxit |
A |
tol |
A |
scaled |
A |
sum1 |
A |
wscheme |
A
|
pairwise |
A |
method |
A
For more details on the method, the R help, |
convCrit |
The convergence criteria to use:
|
verbose |
Logical: If |
object |
An object of class |
x |
An object of the according class. |
type |
If the argument
|
cutoff |
A numerical value at which to cutoff the loadings – this means loadings smaller than the cutoff value will not be printed. |
reldiff |
The argument is only effectiv when |
na.print |
A |
digits |
minimal number of _significant_ digits, see |
use |
The values for which the density plots are created. If
|
abbreviate |
A logical indicating whether dimnames should be abbreviated. For
Details see |
sempls
returns an object of class sempls
, with the following elements:
coefficients |
A |
path_coefficient |
The |
outer_loadings |
The |
cross_loadings |
The |
total_effects |
The |
inner_weights |
The |
outer_weights |
The |
factor_scores |
A |
data |
A |
incomplete |
The index of the incomplete observations. |
... |
All the other values are just storing information used in
the |
plsm
, read.splsm
,
rSquared
, pathDiagram
,
bootsempls
, plsm2sem
,
sem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | data(ECSImobi)
ecsi <- sempls(model=ECSImobi, data=mobi, wscheme="pathWeighting")
ecsi
## create plots
densityplot(ecsi)
densityplot(ecsi, use="prediction")
densityplot(ecsi, use="residuals")
## Values of 'sempls' objects
names(ecsi)
ecsi$outer_weights
ecsi$outer_loadings
ecsi$path_coefficients
ecsi$total_effects
### using convenience methods to sempls results
## path coefficients
pathCoeff(ecsi)
## total effects
totalEffects(ecsi)
## get loadings and check for discriminant validity
(l <- plsLoadings(ecsi))
# outer loadings
print(l, type="outer", digits=2)
# outer loadings greater than 0.5
print(l,type="outer", cutoff=0.5, digits=2)
# cross loadings greater than 0.5
print(l, type="cross", cutoff=0.5, digits=2)
### R-squared
rSquared(ecsi)
### Create .dot representation of the path diagram and
### create .pdf file if graphviz is available.
## Not run:
pathDiagram(ecsi, file="ecsiPLS1", edge.labels="both",
output.type="graphics", digits=3, graphics.fmt = "pdf")
# include R-squared values
pathDiagram(ecsi, file="ecsiPLS2", edge.labels="both",
output.type="graphics", digits=3, graphics.fmt = "pdf",
rSquared=rSquared(ecsi))
# only the structural model
pathDiagram(ecsi, file="ecsiPLS3", edge.labels="both",
output.type="graphics", digits=3, graphics.fmt = "pdf",
rSquared=rSquared(ecsi), full=FALSE)
## End(Not run)
|
Loading required package: lattice
All 250 observations are valid.
Converged after 6 iterations.
Tolerance: 1e-07
Scheme: path weighting
Path Estimate
lam_1_1 Image -> IMAG1 0.745
lam_1_2 Image -> IMAG2 0.599
lam_1_3 Image -> IMAG3 0.576
lam_1_4 Image -> IMAG4 0.769
lam_1_5 Image -> IMAG5 0.744
lam_2_1 Expectation -> CUEX1 0.771
lam_2_2 Expectation -> CUEX2 0.691
lam_2_3 Expectation -> CUEX3 0.608
lam_3_1 Quality -> PERQ1 0.803
lam_3_2 Quality -> PERQ2 0.638
lam_3_3 Quality -> PERQ3 0.784
lam_3_4 Quality -> PERQ4 0.769
lam_3_5 Quality -> PERQ5 0.755
lam_3_6 Quality -> PERQ6 0.775
lam_3_7 Quality -> PERQ7 0.780
lam_4_1 Value -> PERV1 0.902
lam_4_2 Value -> PERV2 0.940
lam_5_1 Satisfaction -> CUSA1 0.792
lam_5_2 Satisfaction -> CUSA2 0.847
lam_5_3 Satisfaction -> CUSA3 0.857
lam_6_1 Complaints -> CUSCO 1.000
lam_7_1 Loyalty -> CUSL1 0.820
lam_7_2 Loyalty -> CUSL2 0.202
lam_7_3 Loyalty -> CUSL3 0.915
beta_1_2 Image -> Expectation 0.505
beta_2_3 Expectation -> Quality 0.557
beta_2_4 Expectation -> Value 0.050
beta_3_4 Quality -> Value 0.558
beta_1_5 Image -> Satisfaction 0.179
beta_2_5 Expectation -> Satisfaction 0.063
beta_3_5 Quality -> Satisfaction 0.512
beta_4_5 Value -> Satisfaction 0.195
beta_5_6 Satisfaction -> Complaints 0.528
beta_1_7 Image -> Loyalty 0.196
beta_5_7 Satisfaction -> Loyalty 0.485
beta_6_7 Complaints -> Loyalty 0.067
[1] "coefficients" "path_coefficients" "outer_loadings"
[4] "cross_loadings" "total_effects" "inner_weights"
[7] "outer_weights" "blocks" "factor_scores"
[10] "data" "scaled" "model"
[13] "weighting_scheme" "weights_evolution" "sum1"
[16] "pairwise" "method" "iterations"
[19] "convCrit" "verbose" "tolerance"
[22] "maxit" "N" "incomplete"
[25] "Hanafi"
Image Expectation Quality Value Satisfaction Complaints
IMAG1 0.3013122 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG2 0.2596912 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG3 0.2179231 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG4 0.3285036 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG5 0.3246814 0.0000000 0.0000000 0.0000000 0.0000000 0
CUEX1 0.0000000 0.5211807 0.0000000 0.0000000 0.0000000 0
CUEX2 0.0000000 0.4736797 0.0000000 0.0000000 0.0000000 0
CUEX3 0.0000000 0.4456342 0.0000000 0.0000000 0.0000000 0
PERQ1 0.0000000 0.0000000 0.2131750 0.0000000 0.0000000 0
PERQ2 0.0000000 0.0000000 0.1447217 0.0000000 0.0000000 0
PERQ3 0.0000000 0.0000000 0.2000177 0.0000000 0.0000000 0
PERQ4 0.0000000 0.0000000 0.1793995 0.0000000 0.0000000 0
PERQ5 0.0000000 0.0000000 0.1786357 0.0000000 0.0000000 0
PERQ6 0.0000000 0.0000000 0.1791207 0.0000000 0.0000000 0
PERQ7 0.0000000 0.0000000 0.2154815 0.0000000 0.0000000 0
PERV1 0.0000000 0.0000000 0.0000000 0.4792825 0.0000000 0
PERV2 0.0000000 0.0000000 0.0000000 0.6040560 0.0000000 0
CUSA1 0.0000000 0.0000000 0.0000000 0.0000000 0.3648649 0
CUSA2 0.0000000 0.0000000 0.0000000 0.0000000 0.3831560 0
CUSA3 0.0000000 0.0000000 0.0000000 0.0000000 0.4509612 0
CUSCO 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1
CUSL1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
CUSL2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
CUSL3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
Loyalty
IMAG1 0.0000000
IMAG2 0.0000000
IMAG3 0.0000000
IMAG4 0.0000000
IMAG5 0.0000000
CUEX1 0.0000000
CUEX2 0.0000000
CUEX3 0.0000000
PERQ1 0.0000000
PERQ2 0.0000000
PERQ3 0.0000000
PERQ4 0.0000000
PERQ5 0.0000000
PERQ6 0.0000000
PERQ7 0.0000000
PERV1 0.0000000
PERV2 0.0000000
CUSA1 0.0000000
CUSA2 0.0000000
CUSA3 0.0000000
CUSCO 0.0000000
CUSL1 0.4606647
CUSL2 0.1142695
CUSL3 0.6543106
Image Expectation Quality Value Satisfaction Complaints
IMAG1 0.7452081 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG2 0.5992004 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG3 0.5763590 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG4 0.7687617 0.0000000 0.0000000 0.0000000 0.0000000 0
IMAG5 0.7444524 0.0000000 0.0000000 0.0000000 0.0000000 0
CUEX1 0.0000000 0.7707672 0.0000000 0.0000000 0.0000000 0
CUEX2 0.0000000 0.6912455 0.0000000 0.0000000 0.0000000 0
CUEX3 0.0000000 0.6078126 0.0000000 0.0000000 0.0000000 0
PERQ1 0.0000000 0.0000000 0.8031781 0.0000000 0.0000000 0
PERQ2 0.0000000 0.0000000 0.6381464 0.0000000 0.0000000 0
PERQ3 0.0000000 0.0000000 0.7837469 0.0000000 0.0000000 0
PERQ4 0.0000000 0.0000000 0.7694797 0.0000000 0.0000000 0
PERQ5 0.0000000 0.0000000 0.7547214 0.0000000 0.0000000 0
PERQ6 0.0000000 0.0000000 0.7746433 0.0000000 0.0000000 0
PERQ7 0.0000000 0.0000000 0.7798648 0.0000000 0.0000000 0
PERV1 0.0000000 0.0000000 0.0000000 0.9022112 0.0000000 0
PERV2 0.0000000 0.0000000 0.0000000 0.9396248 0.0000000 0
CUSA1 0.0000000 0.0000000 0.0000000 0.0000000 0.7924124 0
CUSA2 0.0000000 0.0000000 0.0000000 0.0000000 0.8470215 0
CUSA3 0.0000000 0.0000000 0.0000000 0.0000000 0.8566927 0
CUSCO 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1
CUSL1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
CUSL2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
CUSL3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
Loyalty
IMAG1 0.0000000
IMAG2 0.0000000
IMAG3 0.0000000
IMAG4 0.0000000
IMAG5 0.0000000
CUEX1 0.0000000
CUEX2 0.0000000
CUEX3 0.0000000
PERQ1 0.0000000
PERQ2 0.0000000
PERQ3 0.0000000
PERQ4 0.0000000
PERQ5 0.0000000
PERQ6 0.0000000
PERQ7 0.0000000
PERV1 0.0000000
PERV2 0.0000000
CUSA1 0.0000000
CUSA2 0.0000000
CUSA3 0.0000000
CUSCO 0.0000000
CUSL1 0.8204132
CUSL2 0.2020217
CUSL3 0.9154363
Image Expectation Quality Value Satisfaction Complaints
Image 0 0.5049139 0.000000 0.00000000 0.17873950 0.0000000
Expectation 0 0.0000000 0.556749 0.04998839 0.06252287 0.0000000
Quality 0 0.0000000 0.000000 0.55830438 0.51202394 0.0000000
Value 0 0.0000000 0.000000 0.00000000 0.19476510 0.0000000
Satisfaction 0 0.0000000 0.000000 0.00000000 0.00000000 0.5280662
Complaints 0 0.0000000 0.000000 0.00000000 0.00000000 0.0000000
Loyalty 0 0.0000000 0.000000 0.00000000 0.00000000 0.0000000
Loyalty
Image 0.19575533
Expectation 0.00000000
Quality 0.00000000
Value 0.00000000
Satisfaction 0.48547762
Complaints 0.06692607
Loyalty 0.00000000
Image Expectation Quality Value Satisfaction Complaints
Image 0 0.5049139 0.2811103 0.1821850 0.3897266 0.2058015
Expectation 0 0.0000000 0.5567490 0.3608238 0.4178675 0.2206617
Quality 0 0.0000000 0.0000000 0.5583044 0.6207622 0.3278035
Value 0 0.0000000 0.0000000 0.0000000 0.1947651 0.1028489
Satisfaction 0 0.0000000 0.0000000 0.0000000 0.0000000 0.5280662
Complaints 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
Loyalty 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
Loyalty
Image 0.39873238
Expectation 0.21763337
Quality 0.32330474
Value 0.10143737
Satisfaction 0.52081902
Complaints 0.06692607
Loyalty 0.00000000
Image Expectation Quality Value Satisfaction Complaints Loyalty
Image . 0.505 . . 0.179 . 0.196
Expectation . . 0.557 0.050 0.063 . .
Quality . . . 0.558 0.512 . .
Value . . . . 0.195 . .
Satisfaction . . . . . 0.528 0.485
Complaints . . . . . . 0.067
Loyalty . . . . . . .
Image Expectation Quality Value Satisfaction Complaints Loyalty
Image . 0.505 0.281 0.182 0.390 0.206 0.399
Expectation . . 0.557 0.361 0.418 0.221 0.218
Quality . . . 0.558 0.621 0.328 0.323
Value . . . . 0.195 0.103 0.101
Satisfaction . . . . . 0.528 0.521
Complaints . . . . . . 0.067
Loyalty . . . . . . .
Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.75 . . . . . .
IMAG2 0.60 . 0.50 . . . .
IMAG3 0.58 . . . . . .
IMAG4 0.77 . . . . . .
IMAG5 0.74 . . . . . .
CUEX1 . 0.77 . . . . .
CUEX2 . 0.69 . . . . .
CUEX3 . 0.61 . . . . .
PERQ1 . . 0.80 . 0.68 . .
PERQ2 . . 0.64 . . . .
PERQ3 0.63 . 0.78 . 0.65 . .
PERQ4 . . 0.77 . . . .
PERQ5 0.61 . 0.75 . . . .
PERQ6 . . 0.77 . . . .
PERQ7 . . 0.78 . 0.70 . .
PERV1 . . . 0.90 . . .
PERV2 . . . 0.94 . . .
CUSA1 . . 0.64 . 0.79 . .
CUSA2 . . . . 0.85 . .
CUSA3 . . . . 0.86 . .
CUSCO . . . . . 1.00 .
CUSL1 . . . . . . 0.82
CUSL2 . . . . . . 0.20
CUSL3 . . . . . . 0.92
Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.75 . . . . . .
IMAG2 0.60 . . . . . .
IMAG3 0.58 . . . . . .
IMAG4 0.77 . . . . . .
IMAG5 0.74 . . . . . .
CUEX1 . 0.77 . . . . .
CUEX2 . 0.69 . . . . .
CUEX3 . 0.61 . . . . .
PERQ1 . . 0.80 . . . .
PERQ2 . . 0.64 . . . .
PERQ3 . . 0.78 . . . .
PERQ4 . . 0.77 . . . .
PERQ5 . . 0.75 . . . .
PERQ6 . . 0.77 . . . .
PERQ7 . . 0.78 . . . .
PERV1 . . . 0.90 . . .
PERV2 . . . 0.94 . . .
CUSA1 . . . . 0.79 . .
CUSA2 . . . . 0.85 . .
CUSA3 . . . . 0.86 . .
CUSCO . . . . . 1.00 .
CUSL1 . . . . . . 0.82
CUSL2 . . . . . . 0.20
CUSL3 . . . . . . 0.92
Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.75 . . . . . .
IMAG2 0.60 . . . . . .
IMAG3 0.58 . . . . . .
IMAG4 0.77 . . . . . .
IMAG5 0.74 . . . . . .
CUEX1 . 0.77 . . . . .
CUEX2 . 0.69 . . . . .
CUEX3 . 0.61 . . . . .
PERQ1 . . 0.80 . . . .
PERQ2 . . 0.64 . . . .
PERQ3 . . 0.78 . . . .
PERQ4 . . 0.77 . . . .
PERQ5 . . 0.75 . . . .
PERQ6 . . 0.77 . . . .
PERQ7 . . 0.78 . . . .
PERV1 . . . 0.90 . . .
PERV2 . . . 0.94 . . .
CUSA1 . . . . 0.79 . .
CUSA2 . . . . 0.85 . .
CUSA3 . . . . 0.86 . .
CUSCO . . . . . 1.00 .
CUSL1 . . . . . . 0.82
CUSL2 . . . . . . .
CUSL3 . . . . . . 0.92
Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.75 . 0.57 . 0.55 . .
IMAG2 0.60 . . . . . .
IMAG3 0.58 . . . . . .
IMAG4 0.77 . 0.57 . 0.55 . .
IMAG5 0.74 . 0.55 . 0.51 . .
CUEX1 . 0.77 . . . . .
CUEX2 . 0.69 . . . . .
CUEX3 . 0.61 . . . . .
PERQ1 0.63 0.51 0.80 . 0.68 . .
PERQ2 . . 0.64 . . . .
PERQ3 0.63 . 0.78 . 0.65 . .
PERQ4 . . 0.77 . 0.60 . .
PERQ5 0.61 . 0.75 . 0.52 . .
PERQ6 0.57 . 0.77 . 0.55 . .
PERQ7 0.59 . 0.78 0.55 0.70 . .
PERV1 . . . 0.90 . . .
PERV2 0.53 . 0.59 0.94 0.62 . 0.54
CUSA1 0.58 . 0.64 . 0.79 . 0.50
CUSA2 0.52 . 0.67 . 0.85 . .
CUSA3 0.62 . 0.67 0.60 0.86 0.55 0.63
CUSCO . . 0.53 . 0.53 1.00 .
CUSL1 . . . . . . 0.82
CUSL2 . . . . . . .
CUSL3 0.54 . 0.53 . 0.66 . 0.92
R-squared
Image .
Expectation 0.25
Quality 0.31
Value 0.35
Satisfaction 0.68
Complaints 0.28
Loyalty 0.46
Running dot -Tpdf -o ecsiPLS1.pdf ecsiPLS1.dot
Running dot -Tpdf -o ecsiPLS2.pdf ecsiPLS2.dot
Running dot -Tpdf -o ecsiPLS3.pdf ecsiPLS3.dot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.