Description Usage Arguments Details Value References See Also Examples
Bootstraps a PLS path model in a sempls
object (as returned by
the sempls
method).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | bootsempls(object, nboot=200, start=c("ones", "old"), method=
c("ConstructLevelChanges", "IndividualSignChanges",
"Standard"), verbose=TRUE, strata, ...)
## S3 method for class 'bootsempls'
print(x, digits=3, ...)
## S3 method for class 'bootsempls'
summary(object, type=c("perc", "bca", "norm", "basic", "none"),
level=0.95, ...)
## S3 method for class 'summary.bootsempls'
print(x, na.print, digits = 3, ...)
## S3 method for class 'bootsempls'
densityplot(x, data, pattern="beta", subset=NULL, ...)
## S3 method for class 'bootsempls'
parallelplot(x, data, pattern="beta", subset=NULL, reflinesAt,
col=c("grey", "darkred", "darkred", "black"), lty=c("solid",
"solid","dashed", "dotted"), ...)
|
object |
An object of class |
nboot |
The number of bootstrap replications; the default is |
start |
A
|
method |
A
|
verbose |
A |
x |
An object of class |
na.print |
A |
digits |
Controls the number of digits to print. |
type |
Type of bootstrapped confidence intervals to compute; the
default is |
strata |
An integer vector or factor specifying the strata for
multi-sample problems. If the argument is not provided, all data is
assumed to come from the same sample. For details, see
|
level |
Level for confidence intervals; default is |
... |
Arguments to be passed down to other methods. |
data |
The |
pattern |
A regular expression passed on to
|
subset |
Index or character vector of coefficients to
include. Note, that |
reflinesAt |
A vector of values at which to plot reference lines into the parallel cooordinates. |
col |
Colors for bootstrap statistics, sample statistic, lower and upper bootstrap confidence levels and reference lines. |
lty |
Line type for bootstrap statistics, sample statistic, lower and upper bootstrap confidence levels and reference lines. |
boot.sempls
implements the nonparametric bootstrap, assuming an
independent random sample. Convergence failures in the bootstrap resamples
are discarded (and a warning printed); 10 consecutive convergence failures
result in an error. You can use the boot
function
in the boot package for more complex sampling schemes and additional options.
boot.sempls
returns an object of class bootsempls
, which inherits
from class boot
, supported by the boot
package. The returned
object contains the following components:
t0 |
The estimated parameters in the model fit to the original data set. |
t |
a matrix containing the bootstrapped estimates, one bootstrap replication per row. |
data |
The data frame containing the data to which the model was fit. |
seed |
The value of |
statistic |
The function used to produce the bootstrap replications;
this is always the local function |
sim |
Always set to |
stype |
Always set to |
call |
The call of the |
tryErrorIndices |
Contains the indices for each resample, which
returned |
clcIndices |
When the method |
bootIndices |
A matrix containing the indices of the converged bootstrap samples as rows. |
outer_weights |
A martrix containing, as rows, the outer weights for each bootsrap sample. |
fitted_model |
The fitted sempls model returned from |
strata |
The strata used. This is the vector passed to boot, if it was supplied or a vector of ones if there were no strata. |
Tenenhaus, M., V. E. Vinzi, Y.-M. Chatelin, and C. Lauro (2005) PLS path modeling. Computational Statistics & Data Analysis 48, 159-205.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## Not run:
data(ECSImobi)
ecsi <- sempls(model=ECSImobi, data=mobi)
### Bootstrapping
set.seed(123)
ecsiBoot <- bootsempls(ecsi, nboot=200, start="ones", verbose=TRUE)
summary(ecsiBoot, type="perc", level=0.95)
## inspectation of bootstrap samples
parallelplot(ecsiBoot, subset=1:ncol(ecsiBoot$t), reflinesAt=0)
# only inspecting the path coefficients
parallelplot(ecsiBoot, pattern="beta", reflinesAt=c(0,1))
densityplot(ecsiBoot, pattern="beta")
# only inspecting the outer loadings
parallelplot(ecsiBoot, pattern="lam")
# only inspecting the outer loadings for Loyalty
parallelplot(ecsiBoot, pattern="lam7", type="perc", level=0.90,
main="Loyalty\n 200 bootstrapped outer loadings")
## End(Not run)
|
Loading required package: lattice
All 250 observations are valid.
Converged after 6 iterations.
Tolerance: 1e-07
Scheme: centroid
Loading required package: boot
Attaching package: 'boot'
The following object is masked from 'package:lattice':
melanoma
Resample: 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 Done.
Call: bootsempls(object = ecsi, nboot = 200, start = "ones", verbose = TRUE)
Lower and upper limits are for the 95 percent perc confidence interval
Estimate Bias Std.Error Lower Upper
lam_1_1 0.7434 -0.005673 4.53e-02 0.62329 0.810
lam_1_2 0.6007 0.000249 5.77e-02 0.46737 0.706
lam_1_3 0.5776 -0.002673 6.40e-02 0.42232 0.687
lam_1_4 0.7684 0.000789 4.25e-02 0.67230 0.837
lam_1_5 0.7445 0.005652 2.97e-02 0.68822 0.806
lam_2_1 0.7715 -0.003744 5.90e-02 0.59805 0.855
lam_2_2 0.6866 -0.000168 8.54e-02 0.48100 0.824
lam_2_3 0.6118 -0.004255 7.79e-02 0.42823 0.735
lam_3_1 0.8033 0.003649 2.36e-02 0.75426 0.853
lam_3_2 0.6374 -0.001334 5.44e-02 0.51036 0.736
lam_3_3 0.7835 0.000525 3.27e-02 0.69977 0.836
lam_3_4 0.7691 -0.006298 4.71e-02 0.66263 0.843
lam_3_5 0.7558 -0.001578 3.93e-02 0.66187 0.827
lam_3_6 0.7752 -0.004896 5.84e-02 0.63838 0.868
lam_3_7 0.7794 0.003265 2.96e-02 0.71380 0.834
lam_4_1 0.9043 -0.001000 2.32e-02 0.83570 0.938
lam_4_2 0.9379 0.001144 7.97e-03 0.92146 0.955
lam_5_1 0.7990 0.000196 3.32e-02 0.72011 0.856
lam_5_2 0.8462 -0.000636 2.27e-02 0.79791 0.884
lam_5_3 0.8519 0.000757 1.83e-02 0.81688 0.887
lam_6_1 1.0000 0.000000 6.72e-17 . .
lam_7_1 0.8138 -0.000874 4.05e-02 0.71062 0.887
lam_7_2 0.2191 0.001964 9.88e-02 0.00811 0.444
lam_7_3 0.9168 -0.001365 1.21e-02 0.88882 0.938
beta_1_2 0.5047 0.009323 5.72e-02 0.38811 0.618
beta_2_3 0.5572 0.001871 5.71e-02 0.45412 0.670
beta_2_4 0.0508 0.016118 8.08e-02 -0.09488 0.257
beta_3_4 0.5572 -0.004915 7.73e-02 0.39421 0.705
beta_1_5 0.1788 0.007036 4.86e-02 0.09702 0.285
beta_2_5 0.0644 -0.009813 4.77e-02 -0.03830 0.153
beta_3_5 0.5125 -0.001069 6.52e-02 0.37933 0.634
beta_4_5 0.1918 0.003292 5.60e-02 0.07929 0.305
beta_5_6 0.5261 0.007725 5.03e-02 0.43577 0.626
beta_1_7 0.1954 0.005762 7.33e-02 0.04269 0.341
beta_5_7 0.4835 -0.003895 8.07e-02 0.30492 0.641
beta_6_7 0.0712 0.004157 5.57e-02 -0.01885 0.190
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.