Nothing
# Demonstration of a higher-order construct with lower order constructs
library(seminr)
# Currently only the two_stage solution is implemented.
# Reflective - Reflective type Higher Order Construct ----
# Creating measurement mode
# - note: composite() has a default parameter setting of mode A
# - note: items can be a list of names: c("CUEX1", "CUEX2", "CUEX3")
# which can be constructed quickly as: multi_items("CUEX", 1:3)
mobi_mm <- constructs(
composite("Image", multi_items("IMAG", 1:5)),
composite("Expectation", multi_items("CUEX", 1:3)),
composite("Quality", multi_items("PERQ", 1:7)),
composite("Value", multi_items("PERV", 1:2)),
higher_composite("Satisfaction", dimensions = c("Image","Value"), method = two_stage, weights = mode_A),
composite("Complaints", single_item("CUSCO")),
composite("Loyalty", multi_items("CUSL", 1:3))
)
# Creating structural model
# - note, multiple paths can be created in each line
mobi_sm <- relationships(
paths(from = c("Expectation","Quality"), to = "Satisfaction"),
paths(from = "Satisfaction", to = c("Complaints", "Loyalty"))
)
# Estimate the model with the HOC
mobi_pls <- estimate_pls(data = mobi,
measurement_model = mobi_mm,
structural_model = mobi_sm)
# Plot the model
plot(mobi_pls)
# Bootstrap the model
boot_mobi_pls <- bootstrap_model(mobi_pls, nboot = 1000)
# Pot the bootstrapped model
plot(boot_mobi_pls)
# Reflective - Formative type Higher Order Construct ----
# Creating measurement mode
# - note: composite() has a default parameter setting of mode A
# - note: items can be a list of names: c("CUEX1", "CUEX2", "CUEX3")
# which can be constructed quickly as: multi_items("CUEX", 1:3)
mobi_mm <- constructs(
composite("Image", multi_items("IMAG", 1:5), weights = mode_B),
composite("Expectation", multi_items("CUEX", 1:3)),
composite("Quality", multi_items("PERQ", 1:7)),
composite("Value", multi_items("PERV", 1:2), weights = mode_B),
higher_composite("Satisfaction", dimensions = c("Image","Value"), method = two_stage, weights = mode_A),
composite("Complaints", single_item("CUSCO")),
composite("Loyalty", multi_items("CUSL", 1:3))
)
# Creating structural model
# - note, multiple paths can be created in each line
mobi_sm <- relationships(
paths(from = c("Expectation","Quality"), to = "Satisfaction"),
paths(from = "Satisfaction", to = c("Complaints", "Loyalty"))
)
# Estimate the model with the HOC
mobi_pls <- estimate_pls(data = mobi,
measurement_model = mobi_mm,
structural_model = mobi_sm)
# Plot the model
plot(mobi_pls)
# Bootstrap the model
boot_mobi_pls <- bootstrap_model(mobi_pls, nboot = 1000)
# Pot the bootstrapped model
plot(boot_mobi_pls)
# Formative - Reflective type Higher Order Construct ----
# Creating measurement mode
# - note: composite() has a default parameter setting of mode A
# - note: items can be a list of names: c("CUEX1", "CUEX2", "CUEX3")
# which can be constructed quickly as: multi_items("CUEX", 1:3)
mobi_mm <- constructs(
composite("Image", multi_items("IMAG", 1:5)),
composite("Expectation", multi_items("CUEX", 1:3)),
composite("Quality", multi_items("PERQ", 1:7)),
composite("Value", multi_items("PERV", 1:2)),
higher_composite("Satisfaction", dimensions = c("Image","Value"), method = two_stage, weights = mode_B),
composite("Complaints", single_item("CUSCO")),
composite("Loyalty", multi_items("CUSL", 1:3))
)
# Creating structural model
# - note, multiple paths can be created in each line
mobi_sm <- relationships(
paths(from = c("Expectation","Quality"), to = "Satisfaction"),
paths(from = "Satisfaction", to = c("Complaints", "Loyalty"))
)
# Estimate the model with the HOC
mobi_pls <- estimate_pls(data = mobi,
measurement_model = mobi_mm,
structural_model = mobi_sm)
# Plot the model
plot(mobi_pls)
# Bootstrap the model
boot_mobi_pls <- bootstrap_model(mobi_pls, nboot = 1000)
# Pot the bootstrapped model
plot(boot_mobi_pls)
# Formative - Formative type Higher Order Construct ----
# Creating measurement mode
# - note: composite() has a default parameter setting of mode A
# - note: items can be a list of names: c("CUEX1", "CUEX2", "CUEX3")
# which can be constructed quickly as: multi_items("CUEX", 1:3)
mobi_mm <- constructs(
composite("Image", multi_items("IMAG", 1:5), weights = mode_B),
composite("Expectation", multi_items("CUEX", 1:3)),
composite("Quality", multi_items("PERQ", 1:7)),
composite("Value", multi_items("PERV", 1:2), weights = mode_B),
higher_composite("Satisfaction", dimensions = c("Image","Value"), method = two_stage, weights = mode_B),
composite("Complaints", single_item("CUSCO")),
composite("Loyalty", multi_items("CUSL", 1:3))
)
# Creating structural model
# - note, multiple paths can be created in each line
mobi_sm <- relationships(
paths(from = c("Expectation","Quality"), to = "Satisfaction"),
paths(from = "Satisfaction", to = c("Complaints", "Loyalty"))
)
# Estimate the model with the HOC
mobi_pls <- estimate_pls(data = mobi,
measurement_model = mobi_mm,
structural_model = mobi_sm)
# Plot the model
plot(mobi_pls)
# Bootstrap the model
boot_mobi_pls <- bootstrap_model(mobi_pls, nboot = 1000)
# Pot the bootstrapped model
plot(boot_mobi_pls)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.