Nothing
### Accompanying Code for:
## Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R - A Workbook (2021)
## Hair, J.F. (Jr), Hult, T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., and Ray, S.
## Chapter 4: Evaluation of reflective measurement models
# Load the SEMinR library
library(seminr)
# Load the data ----
corp_rep_data <- corp_rep_data
# Create measurement model ----
corp_rep_mm <- constructs(
composite("COMP", multi_items("comp_", 1:3)),
composite("LIKE", multi_items("like_", 1:3)),
composite("CUSA", single_item("cusa")),
composite("CUSL", multi_items("cusl_", 1:3)))
# Create structural model ----
corp_rep_sm <- relationships(
paths(from = c("COMP", "LIKE"), to = c("CUSA", "CUSL")),
paths(from = c("CUSA"), to = c("CUSL")))
# Estimate the model
corp_rep_pls_model <- estimate_pls(
data = corp_rep_data,
measurement_model = corp_rep_mm,
structural_model = corp_rep_sm,
missing = mean_replacement,
missing_value = "-99")
# Summarize the model results
summary_corp_rep <- summary(corp_rep_pls_model)
# Inspect iterations
summary_corp_rep$iterations
# Inspect the outer loadings
summary_corp_rep$loadings
# Inspect the indicator reliability
summary_corp_rep$loadings^2
# Inspect the internal consistency and reliability
summary_corp_rep$reliability
# Plot the reliabilities of constructs
plot(summary_corp_rep$reliability)
# Table of the FL criteria
summary_corp_rep$validity$fl_criteria
# HTMT Ratio
summary_corp_rep$validity$htmt
# Bootstrap the model
boot_corp_rep <- bootstrap_model(seminr_model = corp_rep_pls_model,
nboot = 1000)
# Store the summary of the bootstrapped model
sum_boot_corp_rep <- summary(boot_corp_rep, alpha = 0.10)
# Extract the bootstrapped HTMT
sum_boot_corp_rep$bootstrapped_HTMT
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.