varimp: SEM Forest Variable Importance

View source: R/varimp.R

varimpR Documentation

SEM Forest Variable Importance

Description

A function to calculate relative variable importance for selecting node splits over a semforest object.

Usage

varimp(
  forest,
  var.names = NULL,
  verbose = F,
  eval.fun = evaluateTree,
  method = "permutation",
  conditional = FALSE,
  ...
)

Arguments

forest

A semforest object

var.names

Covariates used in the forest creation process. NULL value will be automatically filled in by the function.

verbose

Boolean to print messages while function is running.

eval.fun

Default is evaluateTree function. The value of the -2LL of the leaf nodes is compared to baseline overall model.

method

Experimental. Some alternative methods to compute importance. Default is "permutation".

conditional

Conditional variable importance if TRUE, otherwise marginal variable importance.

...

Optional arguments.

Author(s)

Andreas M. Brandmaier, John J. Prindle

References

Brandmaier, A.M., Oertzen, T. v., McArdle, J.J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18(1), 71-86.


semtree documentation built on May 29, 2024, 4:05 a.m.