Description Usage Arguments Details Value Note Author(s) References See Also Examples
Performs Phylogenetic signal estimates evaluating trait intraspecific variability
1 2 3 4 5 6 7 8 9 10 | intra_physig(
trait.col,
data,
phy,
V = NULL,
n.intra = 100,
distrib = "normal",
method = "K",
track = TRUE
)
|
trait.col |
The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass"). |
data |
Data frame containing species traits with row names matching tips
in |
phy |
A phylogeny (class 'phylo', see ? |
V |
Name of the column containing the standard deviation or the standard error of the trait
variable. When information is not available for one taxon, the value can be 0 or |
n.intra |
Number of times to repeat the analysis generating a random trait value.
If NULL, |
distrib |
A character string indicating which distribution to use to generate a random value for the response
and/or predictor variables. Default is normal distribution: "normal" (function |
method |
Method to compute signal: can be "K" or "lambda". |
track |
Print a report tracking function progress (default = TRUE) |
This function estimates phylogenetic signal using phylosig
.
The analysis is repeated n.intra
times. At each iteration the function generates a random value
for each row in the dataset using the standard deviation or errors supplied and assuming a normal or uniform distribution.
To calculate means and se for your raw data, you can use the summarySE
function from the
package Rmisc
.
Output can be visualised using sensi_plot
.
The function intra_physig
returns a list with the following
components:
Trait
: Column name of the trait analysed
data
: Original full dataset
intra.physig.estimates
: Run number, phylogenetic signal estimate
(lambda or K) and the p-value for each run with a different simulated datset.
N.obs
: Size of the dataset after matching it with tree tips and removing NA's.
stats
: Main statistics for signal estimateCI_low
and CI_high
are the lower
and upper limits of the 95
The argument "se" from phylosig
is not available in this function. Use the
argument "V" instead with intra_physig
to indicate the name of the column containing the standard
deviation or the standard error of the trait variable instead.
Caterina Penone & Pablo Ariel Martinez & Gustavo Paterno
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Martinez, P. a., Zurano, J.P., Amado, T.F., Penone, C., Betancur-R, R., Bidau, C.J. & Jacobina, U.P. (2015). Chromosomal diversity in tropical reef fishes is related to body size and depth range. Molecular Phylogenetics and Evolution, 93, 1-4
Blomberg, S. P., T. Garland Jr., A. R. Ives (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368: 20120341.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
data(alien)
alien.data<-alien$data
alien.phy<-alien$phy
# Run sensitivity analysis:
intra <- intra_physig(trait.col = "gestaLen", V = "SD_gesta" ,
data = alien.data, phy = alien.phy[[1]])
summary(intra)
sensi_plot(intra)
sensi_plot(intra, graphs = 1)
sensi_plot(intra, graphs = 2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.