Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/clade_Discrete.R
Fits models for trait evolution of discrete (binary) characters, detecting influential clades
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
data |
Data frame containing species traits with row names matching tips
in |
phy |
A phylogeny (class 'phylo') matching |
model |
The Mkn model to use (see Details). |
transform |
The evolutionary model to transform the tree (see Details). Default is |
trait.col |
The column in the provided data frame which specifies the trait to analyse (which should be a factor with two level) |
clade.col |
The column in the provided data frame which specifies the clades (a character vector with clade names). |
n.species |
Minimum number of species in a clade for the clade to be
included in the leave-one-out deletion analysis. Default is |
n.sim |
Number of simulations for the randomization test. |
bounds |
settings to constrain parameter estimates. See |
n.cores |
number of cores to use. If 'NULL', number of cores is detected. |
track |
Print a report tracking function progress (default = TRUE) |
... |
Further arguments to be passed to |
This function sequentially removes one clade at a time,
fits a model of discrete character evolution using fitDiscrete
,
repeats this this many times (controlled by n.sim
), stores the results and calculates
the effects on model parameters. Currently, only binary discrete traits are supported.
Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species as in the given clade.The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.
Different character model from fitDiscrete
can be used, including ER
(equal-rates),
SYM
(symmetric), ARD
(all-rates-different) and meristic
(stepwise fashion).
All transformations to the phylogenetic tree from fitDiscrete
can be used, i.e. none
,
EB
, lambda
, kappa
anddelta
.
See fitDiscrete
for more details on character models and tree transformations.
Output can be visualised using sensi_plot
.
The function tree_discrete
returns a list with the following
components:
call
: The function call
data
: The original full data frame.
full.model.estimates
: Parameter estimates (transition rates q12 and q21),
AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda
)
for the full model without deleted clades.
sensi.estimates
: Parameter estimates (transition rates q12 and q21),(percentual) difference
in parameter estimate compared to the full model (DIFq12, sigsq.q12, DIFq21, optpar.q21),
AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda
)
for each repeat with a clade removed.
null.dist
: A data frame with estimates for the null distributions
for all clades analysed.
errors
: Clades where deletion resulted in errors.
clade.col
: Which column was used to specify the clades?
optpar
: Transformation parameter used (e.g. lambda
, kappa
etc.)
Gijsbert Werner & Gustavo Paterno
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford.
Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and Wendell Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
#Load data:
data("primates")
#Create a binary trait factor
primates$data$adultMass_binary<-ifelse(primates$data$adultMass > 7350, "big", "small")
clade_disc<-clade_discrete(data=primates$data,phy = primates$phy[[1]],model="SYM",
trait.col = "adultMass_binary",clade.col="family",n.sim=30,n.species=10,n.cores = 2)
summary(clade_disc)
sensi_plot(clade_disc)
sensi_plot(clade_disc, clade = "Cebidae", graph = "q12")
#Change the evolutionary model, tree transformation or minimum number of species per clade
clade_disc_2<-clade_discrete(data=primates$data,phy = primates$phy[[1]],
model="ARD",transform="kappa",
trait.col = "adultMass_binary",clade.col="family",n.sim=30,
n.species=8,n.cores = 2)
summary(clade_disc_2)
sensi_plot(clade_disc_2)
sensi_plot(clade_disc_2, graph = "q12")
sensi_plot(clade_disc_2, graph = "q21")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.