Nothing
setClass("sfc_3x3_combined",
contains = "sfc_nxn",
prototype = list(mode = 3L))
#' General 3x3 space-filling curves
#'
#' @rdname sfc_3x3_combined
#' @param seed The seed sequence. In most cases, the seed sequence is a single base pattern, which can be specified as a single letter, then `rot` controls
#' the initial rotation of the base pattern. It also supports a sequence with more than one base patterns as the seed sequence. In this case,
#' it can be specified as a string of more than one base letters, then `rot` can be set to a single rotation scalar which controls the rotation of the
#' first letter, or a vector with the same length as the number of base letters.
#' @param rot Rotation of the seed sequence, measured in the polar coordinate system, in degrees.
#' @param level Level of the curve. Currently it is restricted to an integer no bigger than 5.
#' @param flip The same setting as in [`sfc_3x3_peano()`] or [`sfc_3x3_meander()`].
#'
#' @details
#' This type of 3x3 curve uses the combintation of base patterns from both the Peano curve and the Meander curve.
#' On each level, the traverse path is randomly selected.
#' @return
#' `sfc_3x3_combined()` returns an `sfc_3x3_combined` object.
#' @export
#' @examples
#' draw_multiple_curves(
#' sfc_3x3_combined("I", level = 3),
#' sfc_3x3_combined("I", level = 3),
#' sfc_3x3_combined("I", level = 3),
#' nrow = 1
#' )
sfc_3x3_combined = function(seed, level = 0, rot = 0L, flip = FALSE) {
if(level > 5) {
stop_wrap("`level` should be not larger than 5.")
}
if(inherits(seed, "character")) {
seed = sfc_seed(seed, rot = rot, universe = sfc_universe(SFC_RULES_3x3_COMBINED))
} else if(inherits(seed, "sfc_seed")) {
levels(seed@seq) = sfc_universe(SFC_RULES_3x3_COMBINED)
} else {
seed = sfc_seed(seq = seed@seq, rot = seed@rot)
}
p = as(seed, "sfc_3x3_combined")
p@seed = seed
p@level = 0L
p@mode = 3L
if(is.logical(flip)) {
if(!(length(flip) == length(seed) || length(flip) == 9 || length(flip) == 1)) {
stop_wrap("If `flip` is a logical vector, it should have a length the same as `seed` or 9\n")
}
}
code = rep(1, level)
if(is.function(flip)) {
for(i in seq_along(code)) {
p = sfc_expand(p, NULL, flip = flip(p))
}
} else {
for(i in seq_along(code)) {
if(i == 1) {
if(length(flip) == length(seed)) {
p = sfc_expand(p, NULL, flip = flip)
} else {
p = sfc_expand(p, NULL, flip = flip[1])
}
} else if (i == 2) {
if(length(flip) == 9) {
} else {
flip = rep(flip, each = 9)
}
p = sfc_expand(p, NULL, flip = flip)
} else {
flip = rep(flip, each = 9)
p = sfc_expand(p, NULL, flip = flip)
}
}
}
p@universe = sfc_universe(seed)
p
}
setAs("sfc_seed", "sfc_3x3_combined", function(from) {
p = new("sfc_3x3_combined")
p@seq = from@seq
levels(p@seq) = sfc_universe(SFC_RULES_3x3_COMBINED)
if(any(is.na(p@seq))) {
stop_wrap("Base letters should all be in `sfc_universe(SFC_RULES_3x3_COMBINED)`.")
}
p@rot = from@rot
p@universe = sfc_universe(SFC_RULES_3x3_COMBINED)
p@level = 0L
p@mode = 3L
p@rules = SFC_RULES_3x3_COMBINED
p
})
#' @rdname sfc_3x3_combined
#' @param p An `sfc_3x3_combined` object.
#' @param code Ignore. The traverse codes are selected randomly.
#' @export
setMethod("sfc_expand",
signature = "sfc_3x3_combined",
definition = function(p, code = NULL, flip = FALSE) {
seq = p@seq
rot = p@rot
n = length(p@seq)
rules = p@rules
tl = get_one_traverse_path(rules, p)
if(!is.null(code)) {
tl = as.integer(code)
}
k = 0
while(length(tl) == 0 && k < 10) {
tl = get_one_traverse_path(rules, p)
k = k + 1
}
sfc_expand_by_rules(rules, p, code = tl, flip = flip)
})
#' @rdname sfc_3x3_combined
#' @export
#' @examples
#' draw_rules_3x3_combined()
#' draw_rules_3x3_combined(flip = TRUE)
draw_rules_3x3_combined = function(flip = FALSE) {
p = sfc_3x3_combined("I", flip = flip)
grid.newpage()
if(flip) {
rules = p@rules@flip
} else {
rules = p@rules@rules
}
equation_max_width = max(do.call("unit.c", lapply(names(rules), function(nm) {
do.call("unit.c", lapply(seq_along(rules[[nm]]), function(i) {
convertWidth(grobWidth(grob_math(tex_pattern(nm, i, rules[[nm]][[i]]), x = 0, y = 0)), "mm")
}))
})))
gb1 = grob_single_base_rule(p, "I", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size, just = c("left", "top"))
nc = length(gb1$children)
gb1$children[[nc]]$width = gb1$children[[nc]]$width
grid.draw(gb1)
gb2 = grob_single_base_rule(p, "R", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height, just = c("left", "top"))
nc = length(gb2$children)
gb2$children[[nc]]$width = gb2$children[[nc]]$width
grid.draw(gb2)
gb3 = grob_single_base_rule(p, "L", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height - gb2$vp$height, just = c("left", "top"))
nc = length(gb3$children)
gb3$children[[nc]]$width = gb3$children[[nc]]$width
grid.draw(gb3)
gb4 = grob_single_base_rule(p, "U", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size, just = c("left", "top"))
nc = length(gb4$children)
gb4$children[[nc]]$width = gb4$children[[nc]]$width
grid.draw(gb4)
gb5 = grob_single_base_rule(p, "B", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size - gb4$vp$height, just = c("left", "top"))
nc = length(gb5$children)
gb5$children[[nc]]$width = gb5$children[[nc]]$width
grid.draw(gb5)
gb6 = grob_single_base_rule(p, "D", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size - gb4$vp$height - gb5$vp$height, just = c("left", "top"))
nc = length(gb6$children)
gb6$children[[nc]]$width = gb6$children[[nc]]$width
grid.draw(gb6)
gb7 = grob_single_base_rule(p, "P", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size - gb4$vp$height - gb5$vp$height - gb6$vp$height, just = c("left", "top"))
nc = length(gb7$children)
gb7$children[[nc]]$width = gb7$children[[nc]]$width
grid.draw(gb7)
gb8 = grob_single_base_rule(p, "Q", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size - gb4$vp$height - gb5$vp$height - gb6$vp$height - gb7$vp$height, just = c("left", "top"))
nc = length(gb8$children)
gb8$children[[nc]]$width = gb8$children[[nc]]$width
grid.draw(gb8)
gb9 = grob_single_base_rule(p, "C", equation_max_width = equation_max_width, flip = flip, x = size + gb1$vp$width + size, y = unit(1, "npc") - size - gb4$vp$height - gb5$vp$height - gb6$vp$height - gb7$vp$height - gb8$vp$height, just = c("left", "top"))
nc = length(gb9$children)
gb9$children[[nc]]$width = gb9$children[[nc]]$width
grid.draw(gb9)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.