Nothing
#' Kgraph fit to graph list object
#'
#' Example function to build a graph list object (list of nodes and links data
#' frames) from a kgraph object (embeddings with cosine similarity cut-off
#' based on random null concept pairs and known related concept pairs)
#'
#' @param l_fit_embeds kgraph object: embeddings with cosine similarity cut-off
#' based on random null concept pairs and known related
#' concept pairs
#'
#' @return graph list object: list of nodes and links data frames
#'
#' @export
kgraph_to_lgraph = function(l_fit_embeds) {
df_projs = l_fit_embeds$df_projs
df_projs %<>% order_dataframe_sgraph(relevant_pattern = 'suicid')
df_nodes = data.frame(name = unique(unlist(df_projs[1:2])))
# color by CUIs
df_nodes$clusters = grepl('[)]$', df_nodes$name)
stats::setNames(df_projs, c(1:2, 'weight')) %>%
list(df_links = ., df_nodes = df_nodes)
}
order_dataframe_sgraph = function(df_x, cols = 1:2, relevant_pattern = NULL) {
# put strings matching relevant patterns in first column
if (!is.null(relevant_pattern)) {
df_x %<>% subset(grepl(relevant_pattern, .[[cols[1]]]) |
grepl(relevant_pattern, .[[cols[2]]]))
uniq_lvls = unique(unlist(df_x[cols]))
relevant_lvls = grep(relevant_pattern, uniq_lvls)
uniq_lvls = c(uniq_lvls[relevant_lvls], uniq_lvls[-relevant_lvls])
df_x[cols] %<>% lapply(function(lvls) factor(lvls, uniq_lvls) %>%
as.numeric)
df_x %<>% order_dataframe_sgraph
df_x[cols] %<>% lapply(function(lvls) uniq_lvls[lvls])
} else {
df_x[cols] = apply(df_x[cols], 1, sort) %>%
t %>% as.data.frame %>% setNames(names(df_x[cols]))
}
df_x
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.