inst/app/calc_func.R

calculate_statistics <- function(input, distribution) {

    if (check_input_gr1(input)) return()

  if (distribution[input$distr, "id"] == "UNIF") {
    y_r  <- lapply(1:input$R, function(x) {
    generate_uniform_sample(n = input$n, mean = input$mu, sigma = input$sigma)
    })

    # Calculation -------------------------------------------------------------
    mean_r  <- unlist(lapply(y_r, mean))
    var_r   <- unlist(lapply(y_r, var))
    all_y_r <- y_r
    y_r     <- y_r[1:5]

    isin <- function(ci, theta) {
      if (!any(is.nan(ci))) {
        if (theta >= ci[1] & theta <= ci[2]) {
          return(TRUE)
        } else {
          return(FALSE)
        }
      } else {
        return(NA)
      }
    }

    ci_r <- t(apply(cbind(mean_r, sqrt(var_r / input$n)), 1, function(x, mu) {
      x[1] + qt(0.975, input$n - 1) * x[2] * c(-1, 1)
    }
    ))

    coverage_r <- apply(ci_r, 1, isin, theta = input$mu)

    data <- list(y_r = y_r, mean_r = mean_r, var_r = var_r, ci_r = ci_r,
    coverage_r = coverage_r, all_y_r = all_y_r)

  } else {
  y_r <- lapply(as.list(rep(NA, input$R)), function(x, par) {
    do.call(paste0("r", distribution[input$distr, "id"]),
            list(n = par$n, mu = par$mu, sigma = par$sigma)[1:(2 +
            as.numeric(!is.na(distribution[input$distr, "sigma.value"])))]
    )
  }, par = input)

  mean_r  <- unlist(lapply(y_r, mean))
  var_r   <- unlist(lapply(y_r, var))
  all_y_r <- y_r
  y_r     <- y_r[1:5]

  t_test_results <- mapply(function(y) {
    t.test(y, mu = input$mu, var.equal = TRUE)
}, all_y_r, SIMPLIFY = FALSE)
  ci_r  <- t(sapply(t_test_results, function(x) x$conf.int))

  coverage_r <- apply(ci_r, 1, isin, theta = input$mu)

  data <- list(y_r = y_r, mean_r = mean_r, var_r = var_r,
              ci_r = ci_r, coverage_r = coverage_r, all_y_r = all_y_r)
  }
}

calculate_statistics_group2 <- function(input, distribution) {
  if (check_input_gr2(input)) return()

  if (distribution[input$distr, "id"] == "UNIF") {

    y_r  <- lapply(1:input$R, function(x) {
    generate_uniform_sample(n = input$group2_n, mean = input$group2.mu,
    sigma = input$group2.sigma)
    })

# Calculation -------------------------------------------------------------
    mean_r <- unlist(lapply(y_r, mean))
    var_r  <- unlist(lapply(y_r, var))
    all_y_r <- y_r
    y_r    <- y_r[1:5]

    isin <- function(ci, theta) {
      if (!any(is.na(ci))) {
        if (theta >= ci[1] & theta <= ci[2]) {
          return(TRUE)
        } else {
          return(FALSE)
        }
      } else {
        return(NA)
      }
    }

    ci_r <- t(apply(cbind(mean_r, sqrt(var_r / input$group2_n)),
                          1, function(x, mu) {
      x[1] + qt(0.975, input$group2_n - 1) * x[2] * c(-1, 1)
    }
    ))
    coverage_r <- apply(ci_r, 1, isin, theta = input$group2.mu)

    group2_data <- list(y_r = y_r, mean_r = mean_r, var_r = var_r,
    ci_r = ci_r, coverage_r = coverage_r, all_y_r = all_y_r)
  } else {
  y_r <- lapply(as.list(rep(NA, input$R)), function(x, par) {
    do.call(paste0("r", distribution[input$distr, "id"]),
            list(n = par$group2_n, mu = par$group2.mu,
            sigma = par$group2.sigma)[1:(2 +
            as.numeric(!is.na(distribution[input$distr, "sigma.value"])))]
    )
  },
  par = input)

  mean_r <- unlist(lapply(y_r, mean))
  var_r  <- unlist(lapply(y_r, var))
  all_y_r <- y_r
  y_r    <- y_r[1:5]

  isin <- function(ci, theta) {
    if (!any(is.na(ci))) {
      if (theta >= ci[1] & theta <= ci[2]) {
        return(TRUE)
      } else {
        return(FALSE)
      }
    } else {
      return(NA)
    }
  }

  t_test_results <- mapply(function(y) {
                  t.test(y, mu = input$mu, var.equal = TRUE)
                        }, all_y_r, SIMPLIFY = FALSE)
  ci_r  <- t(sapply(t_test_results, function(x) x$conf.int))

  coverage_r <- apply(ci_r, 1, isin, theta = input$group2.mu)

  group2_data <- list(y_r = y_r, mean_r = mean_r, var_r = var_r, ci_r = ci_r,
                      coverage_r = coverage_r, all_y_r = all_y_r)

  return(group2_data)
  }
}

calculate_wilcoxon <- function(.group1, .group2, input, distribution) {
      sample1 <- .group1$all_y_r
      sample2 <- .group2$all_y_r

      if (is.null(sample1) | is.null(sample2)) {
      return()
      } else {

      R <- input$R
      plan(user_plan)
      result <-  future({

        if (is.null(n.cores)) {
        no_cores <- ifelse(detectCores() > 1, ceiling(detectCores() / 2),
                                              detectCores())
        } else {
        no_cores  <- n.cores
        }
        cl <- makeCluster(no_cores)

        clusterExport(cl, c("sample1", "sample2", "wilcox.test", "R"),
        envir = environment())

        wilcox_results <- parLapply(cl, 1:R, function(i) {
          wilcox.test(sample1[[i]], sample2[[i]], conf.int = TRUE,
                                                  exact = FALSE)
        })

        stopCluster(cl)
        wilcox_results
      })

        res <- value(result)
        plan(sequential)

        wilcox_pvalue <- sapply(res, `[[`, "p.value")
        wilcox_ci_both <- t(sapply(res, `[[`, "conf.int"))
        colnames(wilcox_ci_both) <- c("ci_low", "ci_high")

        wilcox_r <- list(wilcox_ci_both, wilcox_pvalue)

        student_ci_both <- t(data.frame(mapply(t.test,
        .group1$all_y_r, .group2$all_y_r, var.equal = TRUE)["conf.int", ]))
        student_pvalue  <- t(data.frame(mapply(t.test,
        .group1$all_y_r, .group2$all_y_r, var.equal = TRUE)["p.value", ]))

        welch_ci_both <- t(data.frame(mapply(t.test,
        .group1$all_y_r, .group2$all_y_r, var.equal = FALSE)["conf.int", ]))
        welch_pvalue  <- t(data.frame(mapply(t.test,
        .group1$all_y_r, .group2$all_y_r, var.equal = FALSE)["p.value", ]))

        my_list <- list(
          student = list(student_ci_both, pvalue = student_pvalue),
          welch   = list(welch_ci_both, pvalue = welch_pvalue),
          wilcox  = wilcox_r)

      }
}

Try the shinyCLT package in your browser

Any scripts or data that you put into this service are public.

shinyCLT documentation built on April 3, 2025, 10:53 p.m.