Nothing
#' Aggregation using local minimum and maximum values.
#'
#' @export
#' @docType class
#' @format An \code{R6::R6Class} object
#' @description
#' Divide the data into small data ranges
#' and find the maximum and minimum values of each.
#' Note that many samples may be replaced with \code{NA},
#' if \code{interleave_gaps = TRUE} and the original data is increased or decreased
#' monotonically. Use \code{min_max_ovlp_aggregator} instead in that case.
#' \code{n_out} must be even number.
#' @examples
#' data(noise_fluct)
#' agg <- min_max_aggregator$new(interleave_gaps = TRUE)
#' d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
#' plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter", mode = "lines")
#'
min_max_aggregator <- R6::R6Class(
"min_max_aggregator",
inherit = aggregator,
public = list(
#' @description
#' Constructor of the Aggregator.
#' @param interleave_gaps,coef_gap,NA_position,...
#' Arguments pass to the constructor of \code{aggregator} object.
initialize = function(
...,
interleave_gaps, coef_gap, NA_position
) {
args <- c(as.list(environment()), list(...))
do.call(super$initialize, args)
}
),
private = list(
accepted_datatype = c("numeric", "integer", "character", "factor", "logical"),
aggregate_exec = function(x, y, n_out) {
n_minmax <- n_out / 2 - 1
y_mat <- private$generate_matrix(
y[2:(length(x) - 1)], n_minmax, remove_first_last = FALSE
)
y_mat_values <- apply(y_mat, 2, function(x) sum(!is.na(x)))
idx_min <- 1 +
purrr::map_int(1:n_minmax, ~which.min(y_mat[, .x])) +
c(0, cumsum(y_mat_values)[1:(n_minmax - 1)])
idx_max <- 1 +
purrr::map_int(1:n_minmax, ~which.max(y_mat[, .x])) +
c(0, cumsum(y_mat_values)[1:(n_minmax - 1)])
idx <- c(1, idx_min, idx_max, length(x)) %>% sort()
return(list(x = x[idx], y = y[idx]))
},
aggregate_db = function(x, y, n_out, db) {
srcs_name <- basename(db) %>% stringr::str_remove("\\..*$")
con <- DBI::dbConnect(duckdb::duckdb(), dbdir = db)
n_row <- dbGetQuery(
con,
"select count(*) as n_row from tmp_data"
) %>%
dplyr::pull()
n_out <- n_out %/% 2
n_sample <- rep(n_row %/% n_out, n_out) + c(rep(1, n_row %% n_out), rep(0, n_out - n_row %% n_out))
data_agg <- purrr::map2(
n_sample, c(0, cumsum(n_sample)[-n_out]),
function(i, offset) {
data <- dbGetQuery(
con,
paste0(
"select * from tmp_data limit ", i, "offset ", offset
)
)
idx_min <- which(data["y"] == min(data["y"], na.rm = TRUE))
idx_max <- which(data["y"] == max(data["y"], na.rm = TRUE))
data[c(min(idx_min, idx_max), max(idx_min, idx_max)),]
}
) %>%
bind_rows()
DBI::dbExecute(con, paste0("drop table tmp_data"))
DBI::dbDisconnect(con)
if (inherits(data_agg$x, "POSIXt")) {
data_agg$x <- nanotime::as.nanotime(data_agg$x)
}
return(list(x = data_agg$x, y = data_agg$y))
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.