Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----install_packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE----
###*****************************
# INITIAL COMMANDS TO RESET THE SYSTEM
seedNo=14159
set.seed(seedNo)
###*****************************
###*****************************
require("sicegar")
require("dplyr")
require("ggplot2")
require("cowplot")
###*****************************
## ----generate_data------------------------------------------------------------
time <- rep(seq(1, 24, 4), 5)
noise_parameter <- 0.3
mean_values <- doublesigmoidalFitFormula_h0(time,
finalAsymptoteIntensityRatio = .3,
maximum = 10,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8,
h0 = 3)
intensity <- rnorm(n = length(mean_values), mean = mean_values, sd = rep(noise_parameter, length(mean_values)))
dataInput <- data.frame(time, intensity)
ggplot(dataInput, aes(time, intensity)) +
geom_point() +
scale_y_continuous(limits = c(0, 12), expand = expansion(mult = c(0, 0))) +
theme_bw()
## -----------------------------------------------------------------------------
try({
fitObj <- fitAndCategorize(dataInput,
threshold_minimum_for_intensity_maximum = 0.3,
threshold_intensity_range = 0.1,
threshold_t0_max_int = 1E10,
use_h0 = TRUE)
})
## -----------------------------------------------------------------------------
dataInput_jitter <- dataInput |>
mutate(time = jitter(time, amount = 0.5))
ggplot(dataInput_jitter, aes(time, intensity)) +
geom_point() +
scale_y_continuous(limits = c(0, 12), expand = expansion(mult = c(0, 0))) +
theme_bw()
## -----------------------------------------------------------------------------
fitObj_jittered <- fitAndCategorize(dataInput_jitter,
threshold_minimum_for_intensity_maximum = 0.3,
threshold_intensity_range = 0.1,
threshold_t0_max_int = 1E10,
use_h0 = TRUE)
figureModelCurves(dataInput = fitObj_jittered$normalizedInput,
doubleSigmoidalFitVector = fitObj_jittered$doubleSigmoidalModel,
showParameterRelatedLines = TRUE,
use_h0 = TRUE)
## -----------------------------------------------------------------------------
time <- seq(1, 24, 0.5)
noise_parameter <- 0.2
mean_values <- doublesigmoidalFitFormula_h0(time,
finalAsymptoteIntensityRatio = .3,
maximum = 10,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8,
h0 = 8)
intensity <- rnorm(n = length(mean_values), mean = mean_values, sd = rep(noise_parameter, length(mean_values)))
dataInput <- data.frame(time, intensity)
ggplot(dataInput, aes(time, intensity)) +
geom_point() +
scale_y_continuous(limits = c(0, 12), expand = expansion(mult = c(0, 0))) +
theme_bw()
## -----------------------------------------------------------------------------
dataInput_flipped <- dataInput |>
mutate(time = max(time) - time)
ggplot(dataInput_flipped, aes(time, intensity)) +
geom_point() +
scale_y_continuous(limits = c(0, 12), expand = expansion(mult = c(0, 0))) +
theme_bw()
## -----------------------------------------------------------------------------
fitObj_flipped <- fitAndCategorize(dataInput_flipped,
threshold_minimum_for_intensity_maximum = 0.3,
threshold_intensity_range = 0.1,
threshold_t0_max_int = 1E10,
use_h0 = TRUE)
figureModelCurves(dataInput = fitObj_flipped$normalizedInput,
doubleSigmoidalFitVector = fitObj_flipped$doubleSigmoidalModel,
showParameterRelatedLines = TRUE,
use_h0 = TRUE)
## -----------------------------------------------------------------------------
original_onset_time <- max(dataInput$time) - fitObj_flipped$doubleSigmoidalModel$midPoint1Param_Estimate
dataInput <- data.frame(time, intensity)
ggplot(dataInput, aes(time, intensity)) +
geom_point() +
geom_vline(xintercept = original_onset_time, color = "red", linetype = "dashed") +
scale_y_continuous(limits = c(0, 12), expand = expansion(mult = c(0, 0))) +
theme_bw()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.