Nothing
predict.filter.NULL <-
function (object, newdata, ...)
{
return(newdata)
}
predict.filter.PCA <-
function (object, newdata, ...)
{
res = predict(object$mod, newdata)[,1:object$nbreVarX]
return(res)
}
predict.filter.RegressionTreeFilter <-
function (object, newdata, ...)
{
if(is.matrix(newdata))
nbreDExempleMax=dim(newdata)[1]
else
nbreDExempleMax=1
resFinal=c()
for(nbreDExemple in 1:nbreDExempleMax)
{
Nmax = object$nbreVarX
a = newdata
resume = TRUE
shortResume = TRUE
D = list()
L = list()
t = c(1:length(a))
D[[1]] = t[1]
D[[2]] = t[length(t)]
L[[1]] = struct(g = integer(), d = integer())
L[[1]]$g = t[1]
L[[1]]$d = t[length(t)]
ac = rep(mean(a), (t[length(t)]))
Np = 1
while (Np != Nmax) {
if (is.struct(L[[1]])) {
max = (L[[1]]$d - L[[1]]$g) * var(a[c(L[[1]]$g:L[[1]]$d)])
ti = L[[1]]$g
tj = L[[1]]$d
LIndex = 1
if (length(L) != 1) {
for (i in 2:length(L)) {
if (is.struct(L[[i]])) {
tmp = (L[[i]]$d - L[[i]]$g) * var(a[c(L[[i]]$g:L[[i]]$d)])
if (tmp > max) {
max = tmp
ti = L[[i]]$g
tj = L[[i]]$d
LIndex = i
}
}
}
}
L[[LIndex]] = NA
}
max = 0
maxE = -1
vartitj = (tj - ti) * var(a[which(t == ti):which(t ==
tj)])
for (e in which(t == ti):which(t == tj)) {
varIE = var(a[ti:t[e]])
if (is.na(varIE)) {
varIE = 0
}
varEJ = var(a[t[e]:tj])
if (is.na(varEJ)) {
varEJ = 0
}
tmp = vartitj - (t[e] - ti) * varIE - (tj - t[e]) *
varEJ
if (tmp > max) {
max = tmp
maxE = e
}
}
e = maxE
te = t[e]
distIE = length(which(t == ti):which(t == te))
distEJ = length(which(t == te):which(t == tj))
ac[ti:te] = rep(mean(a[ti:te]), distIE)
ac[te:tj] = rep(mean(a[te:tj]), distEJ)
Np = Np + 1
trouve = FALSE
trouveI = -1
for (i in 1:length(L)) {
if (!is.struct(L[[i]]) && !trouve) {
trouve = TRUE
trouveI = i
}
}
if (!trouve) {
trouveI = length(L) + 1
}
L[[trouveI]] = struct(g = integer(), d = integer())
L[[trouveI]]$g = ti
L[[trouveI]]$d = te
trouve = FALSE
trouveI = -1
for (i in 1:length(L)) {
if (!is.struct(L[[i]]) && !trouve) {
trouve = TRUE
trouveI = i
}
}
if (!trouve) {
trouveI = length(L) + 1
}
L[[trouveI]] = struct(g = integer(), d = integer())
L[[trouveI]]$g = te
L[[trouveI]]$d = tj
D[[length(D) + 1]] = te
}
if (!resume) {
resFinal = rbind(ac)
}
else {
if (shortResume) {
resFinal = rbind(unique(ac))
}
else {
resTmp = unique(ac)
res = resTmp
for (i in resTmp) {
res = c(res, length(which(ac == i)))
}
resFinal = rbind(res)
}
}
}
return(resFinal)
}
predict.filter.mRMR <-
function (object, newdata, ...)
{
return(newdata[, object$filter])
}
predict.filter.MAX <-
function (object, newdata, ...)
{
if(is.matrix(newdata))
nbreDExempleMax=dim(newdata)[1]
else
nbreDExempleMax=1
res=c()
for(nbreDExemple in 1:nbreDExempleMax)
{
res = rbind(res,sort(newdata[nbreDExemple,])[(dim(newdata)[2]-object$nbreVarX+1):(dim(newdata)[2])])
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.