show_cor: A Simple and General Way for Association Analysis

View source: R/show_cor.R

show_corR Documentation

A Simple and General Way for Association Analysis

Description

All variables must be continuous. The matrix will be returned as an element of ggplot object. This is basically a wrapper of R package ggcorrplot.

Usage

show_cor(
  data,
  x_vars = colnames(data),
  y_vars = x_vars,
  cor_method = "spearman",
  vis_method = "square",
  lab = TRUE,
  test = TRUE,
  hc_order = FALSE,
  p_adj = NULL,
  ...
)

Arguments

data

a data.frame.

x_vars

variables/column names shown in x axis.

y_vars

variables/column names shown in y axis.

cor_method

method for correlation, default is 'spearman'.

vis_method

visualization method, default is 'square', can also be 'circle'.

lab

logical value. If TRUE, add correlation coefficient on the plot.

test

if TRUE, run test for correlation and mark significance.

hc_order

logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

p_adj

p adjust method, see stats::p.adjust for details.

...

other parameters passing to ggcorrplot::ggcorrplot().

Value

a ggplot object

See Also

show_sig_feature_corrplot for specific and more powerful association analysis and visualization.

Examples

data("mtcars")
p1 <- show_cor(mtcars)
p2 <- show_cor(mtcars,
  x_vars = colnames(mtcars)[1:4],
  y_vars = colnames(mtcars)[5:8]
)
p3 <- show_cor(mtcars, vis_method = "circle", p_adj = "fdr")
p1
p1$cor
p2
p3

## Auto detect problem variables
mtcars$xx <- 0L
p4 <- show_cor(mtcars)
p4

sigminer documentation built on May 29, 2024, 3:11 a.m.