View source: R/rasch.copula2_aux.R
person.parameter.rasch.copula | R Documentation |
Ability estimates as maximum likelihood estimates (MLE) are provided by the Rasch copula model.
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001,
conv.parm=0.001, maxiter=20, stepwidth=1,
print.summary=TRUE, ...)
raschcopula.object |
Object which is generated by the |
numdiff.parm |
Parameter |
conv.parm |
Convergence criterion |
maxiter |
Maximum number of iterations |
stepwidth |
Maximal increment in iterations |
print.summary |
Print summary? |
... |
Further arguments to be passed |
A list with following entries
person |
Estimated person parameters |
se.inflat |
Inflation of individual standard errors due to local dependence |
theta.table |
Ability estimates for each unique response pattern |
pattern.in.data |
Item response pattern |
summary.theta.table |
Summary statistics of person parameter estimates |
See rasch.copula2
for estimating Rasch copula models.
#############################################################################
# EXAMPLE 1: Reading Data
#############################################################################
data(data.read)
dat <- data.read
# define item cluster
itemcluster <- rep( 1:3, each=4 )
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
## Mean percentage standard error inflation
## missing.pattern Mperc.seinflat
## 1 1 6.35
## Not run:
#############################################################################
# EXAMPLE 2: 12 items nested within 3 item clusters (testlets)
# Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12
#############################################################################
set.seed(967)
I <- 12 # number of items
n <- 450 # number of persons
b <- seq(-2,2, len=I) # item difficulties
b <- sample(b) # sample item difficulties
theta <- stats::rnorm( n, sd=1 ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ 1:4 ] <- 1
itemcluster[ 6:9 ] <- 2
itemcluster[ 10:12 ] <- 3
# residual correlations
rho <- c( .35, .25, .30 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# estimate Rasch copula model
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
## Mean percentage standard error inflation
## missing.pattern Mperc.seinflat
## 1 1 10.48
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.