Nothing
#' @title Train a model using Lightweight Temporal Self-Attention Encoder
#' @name sits_lighttae
#'
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Rolf Simoes, \email{rolfsimoes@@gmail.com}
#' @author Charlotte Pelletier, \email{charlotte.pelletier@@univ-ubs.fr}
#'
#' @description Implementation of Light Temporal Attention Encoder (L-TAE)
#' for satellite image time series. This is a lightweight version of the
#' temporal attention encoder proposed by Garnot et al. For the TAE,
#' please see \code{\link[sits]{sits_tae}}.
#'
#' TAE is a simplified version of the well-known self-attention architeture
#' which is used in large language models.
#' Its modified self-attention scheme that uses the input
#' embeddings as values. TAE defines a single master query for each sequence,
#' computed from the temporal average of the queries. This master query is compared
#' to the sequence of keys to produce a single attention mask
#' used to weight the temporal mean of values into a single feature vector.
#'
#' The lightweight version of TAE further simplifies the TAE model.
#' It defines master query of each head as a model parameter instead
#' of the results of a linear layer, as is done it TAE.
#' The authors argue that such simplification reduces the number of parameters,
#' while the lack of flexibility is compensated by the larger number of available heads.
#'
#'
#' @note
#' \code{sits} provides a set of default values for all classification models.
#' These settings have been chosen based on testing by the authors.
#' Nevertheless, users can control all parameters for each model.
#' Novice users can rely on the default values,
#' while experienced ones can fine-tune deep learning models
#' using \code{\link[sits]{sits_tuning}}.
#'
#' This function is based on the paper by Vivien Garnot referenced below
#' and code available on github at
#' \url{https://github.com/VSainteuf/lightweight-temporal-attention-pytorch}
#' If you use this method, please cite the original TAE and the LTAE paper.
#'
#' We also used the code made available by Maja Schneider in her work with
#' Marco Körner referenced below and available at
#' \url{https://github.com/maja601/RC2020-psetae}.
#'
#' @references
#' Vivien Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata,
#' "Satellite Image Time Series Classification with Pixel-Set Encoders
#' and Temporal Self-Attention",
#' 2020 Conference on Computer Vision and Pattern Recognition.
#' pages 12322-12331.
#' \doi{10.1109/CVPR42600.2020.01234}
#'
#' Vivien Garnot, Loic Landrieu,
#' "Lightweight Temporal Self-Attention for Classifying
#' Satellite Images Time Series",
#' arXiv preprint arXiv:2007.00586, 2020.
#'
#' Schneider, Maja; Körner, Marco,
#' "[Re] Satellite Image Time Series Classification
#' with Pixel-Set Encoders and Temporal Self-Attention."
#' ReScience C 7 (2), 2021.
#' \doi{10.5281/zenodo.4835356}
#'
#' @param samples Time series with the training samples
#' (tibble of class "sits").
#' @param samples_validation Time series with the validation samples
#' (tibble of class "sits").
#' If \code{samples_validation} parameter is provided,
#' \code{validation_split} is ignored.
#' @param epochs Number of iterations to train the model
#' (integer, min = 1, max = 20000).
#' @param batch_size Number of samples per gradient update
#' (integer, min = 16L, max = 2048L)
#' @param validation_split Fraction of training data
#' to be used as validation data.
#' @param optimizer Optimizer function to be used.
#' @param opt_hparams Hyperparameters for optimizer:
#' \code{lr} : Learning rate of the optimizer
#' \code{eps}: Term added to the denominator
#' to improve numerical stability.
#' \code{weight_decay}: L2 regularization rate.
#' @param lr_decay_epochs Number of epochs to reduce learning rate.
#' @param lr_decay_rate Decay factor for reducing learning rate.
#' @param patience Number of epochs without improvements until
#' training stops.
#' @param min_delta Minimum improvement in loss function
#' to reset the patience counter.
#' @param seed Seed for random values.
#' @param verbose Verbosity mode (TRUE/FALSE). Default is FALSE.
#'
#' @return A fitted model to be used for classification of data cubes.
#'
#'
#' @examples
#' if (sits_run_examples()) {
#' # create a lightTAE model
#' torch_model <- sits_train(samples_modis_ndvi, sits_lighttae())
#' # plot the model
#' plot(torch_model)
#' # create a data cube from local files
#' data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
#' cube <- sits_cube(
#' source = "BDC",
#' collection = "MOD13Q1-6.1",
#' data_dir = data_dir
#' )
#' # classify a data cube
#' probs_cube <- sits_classify(
#' data = cube, ml_model = torch_model, output_dir = tempdir()
#' )
#' # plot the probability cube
#' plot(probs_cube)
#' # smooth the probability cube using Bayesian statistics
#' bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
#' # plot the smoothed cube
#' plot(bayes_cube)
#' # label the probability cube
#' label_cube <- sits_label_classification(
#' bayes_cube,
#' output_dir = tempdir()
#' )
#' # plot the labelled cube
#' plot(label_cube)
#' }
#' @export
sits_lighttae <- function(samples = NULL,
samples_validation = NULL,
epochs = 150L,
batch_size = 128L,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(
lr = 0.0005,
eps = 1e-08,
weight_decay = 7e-04
),
lr_decay_epochs = 50L,
lr_decay_rate = 1.0,
patience = 20L,
min_delta = 0.01,
seed = NULL,
verbose = FALSE) {
# set caller for error msg
.check_set_caller("sits_lighttae")
# Verifies if 'torch' and 'luz' packages is installed
.check_require_packages(c("torch", "luz"))
# documentation mode? verbose is FALSE
verbose <- .message_verbose(verbose)
# Function that trains a torch model based on samples
train_fun <- function(samples) {
# does not support working with DEM or other base data
if (inherits(samples, "sits_base")) {
stop(.conf("messages", "sits_train_base_data"), call. = FALSE)
}
# Avoid add a global variable for 'self'
self <- NULL
# Check validation_split parameter if samples_validation is not passed
if (is.null(samples_validation)) {
.check_num_parameter(validation_split,
exclusive_min = 0.0, max = 0.5
)
}
# Pre-conditions
.check_pre_sits_lighttae(
samples = samples, epochs = epochs,
batch_size = batch_size,
lr_decay_epochs = lr_decay_epochs,
lr_decay_rate = lr_decay_rate,
patience = patience, min_delta = min_delta,
verbose = verbose
)
# Other pre-conditions:
.check_int_parameter(seed, allow_null = TRUE)
# Check opt_hparams
# Get parameters list and remove the 'param' parameter
optim_params_function <- formals(optimizer)[-1L]
.check_opt_hparams(opt_hparams, optim_params_function)
optim_params_function <- utils::modifyList(
x = optim_params_function,
val = opt_hparams
)
# Samples labels
labels <- .samples_labels(samples)
# Samples bands
bands <- .samples_bands(samples)
# Samples timeline
timeline <- .samples_timeline(samples)
# Create numeric labels vector
code_labels <- seq_along(labels)
names(code_labels) <- labels
# Number of labels, bands, and number of samples (used below)
n_labels <- length(labels)
n_bands <- length(bands)
n_times <- .samples_ntimes(samples)
# Data normalization
ml_stats <- .samples_stats(samples)
# Organize train and the test data
train_test_data <- .torch_train_test_samples(
samples = samples,
samples_validation = samples_validation,
ml_stats = ml_stats,
labels = labels,
code_labels = code_labels,
timeline = timeline,
bands = bands,
validation_split = validation_split
)
# Obtain the train and the test data
train_samples <- train_test_data[["train_samples"]]
test_samples <- train_test_data[["test_samples"]]
n_samples_train <- nrow(train_samples)
n_samples_test <- nrow(test_samples)
# Organize data for model training
train_x <- array(
data = as.matrix(.pred_features(train_samples)),
dim = c(n_samples_train, n_times, n_bands)
)
train_y <- unname(code_labels[.pred_references(train_samples)])
# Create the test data
test_x <- array(
data = as.matrix(.pred_features(test_samples)),
dim = c(n_samples_test, n_times, n_bands)
)
test_y <- unname(code_labels[.pred_references(test_samples)])
# Create a torch seed (we define a new variable to allow users
# to access this seed number from the model environment)
torch_seed <- .torch_seed(seed)
# Set torch seed
torch::torch_manual_seed(torch_seed)
# Define the L-TAE architecture
light_tae_model <- torch::nn_module(
classname = "model_ltae",
initialize = function(n_bands,
n_labels,
timeline,
layers_spatial_encoder = c(32L, 64L, 128L),
n_heads = 16L,
n_neurons = c(256L, 128L),
dropout_rate = 0.2,
dim_input_decoder = 128L,
dim_layers_decoder = c(64L, 32L)) {
# define an spatial encoder
self$spatial_encoder <-
.torch_pixel_spatial_encoder(
n_bands = n_bands,
layers_spatial_encoder = layers_spatial_encoder
)
# number of input channels == last layer of mlp2
in_channels <-
layers_spatial_encoder[length(layers_spatial_encoder)]
# define a temporal encoder
self$temporal_encoder <-
.torch_light_temporal_attention_encoder(
timeline = timeline,
in_channels = in_channels,
n_heads = n_heads,
n_neurons = n_neurons,
dropout_rate = dropout_rate
)
# add a final layer to the decoder
# with a dimension equal to the number of layers
dim_layers_decoder[length(dim_layers_decoder) + 1L] <- n_labels
# decode the tensor
self$decoder <- .torch_multi_linear_batch_norm_relu(
dim_input_decoder,
dim_layers_decoder
)
},
forward = function(input) {
out <- input |>
self$spatial_encoder() |>
self$temporal_encoder() |>
self$decoder()
out
# softmax is done externally
# by .ml_normalize.torch_model function
}
)
# verify if GPU is available
cpu_train <- .torch_cpu_train()
# Train the model using luz
torch_model <-
luz::setup(
module = light_tae_model,
loss = torch::nn_cross_entropy_loss(),
metrics = list(luz::luz_metric_accuracy()),
optimizer = optimizer
) |>
luz::set_hparams(
n_bands = n_bands,
n_labels = n_labels,
timeline = timeline
) |>
luz::set_opt_hparams(
!!!optim_params_function
) |>
luz::fit(
data = list(train_x, train_y),
epochs = epochs,
valid_data = list(test_x, test_y),
callbacks = list(
luz::luz_callback_early_stopping(
monitor = "valid_loss",
mode = "min",
patience = patience,
min_delta = min_delta
),
luz::luz_callback_lr_scheduler(
torch::lr_step,
step_size = lr_decay_epochs,
gamma = lr_decay_rate
)
),
accelerator = luz::accelerator(cpu = cpu_train),
dataloader_options = list(batch_size = batch_size),
verbose = verbose
)
# Serialize model
serialized_model <- .torch_serialize_model(torch_model[["model"]])
# Retrieve attention mask
# Get the encoder
# encoder <- torch_model$model$temporal_encoder
# Retrieve the attention mask from the encoder
# attn_mask <- encoder$attention_heads$attention$attention_mask
# Function that predicts labels of input values
predict_fun <- function(values) {
# Verifies if torch package is installed
.check_require_packages("torch")
# Set torch threads to 1
suppressWarnings(torch::torch_set_num_threads(1L))
# Unserialize model
torch_model[["model"]] <- .torch_unserialize_model(serialized_model)
# Transform input into a 3D tensor
# Reshape the 2D matrix into a 3D array
n_samples <- nrow(values)
n_times <- .samples_ntimes(samples)
n_bands <- length(bands)
# Performs data normalization
values <- .pred_normalize(pred = values, stats = ml_stats)
values <- array(
data = as.matrix(values), dim = c(n_samples, n_times, n_bands)
)
# CPU or GPU classification?
if (.torch_gpu_classification()) {
# Get batch size
batch_size <- sits_env[["batch_size"]]
# transform the input array to a dataset
values <- .torch_as_dataset(values)
# Transform data set to dataloader to use the batch size
values <- torch::dataloader(values, batch_size = batch_size)
# GPU classification
values <- .try(
stats::predict(object = torch_model, values),
.msg_error = .conf("messages", ".check_gpu_memory_size")
)
} else {
# CPU classification
values <- stats::predict(object = torch_model, values)
}
# Convert from tensor to array
values <- torch::as_array(values)
# Update the columns names to labels
colnames(values) <- labels
values
}
# Set model class
predict_fun <- .set_class(
predict_fun, "torch_model", "sits_model", class(predict_fun)
)
predict_fun
}
# If samples is informed, train a model and return a predict function
# Otherwise give back a train function to train model further
.factory_function(samples, train_fun)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.