R/subassign.R

Defines functions `[<-.simple_triplet_matrix` `[<-.simple_sparse_array`

## CB 2012/9 2016/8
##
## FIXME extending might be useful unless implemented
##	 as for dense arrays.
##
`[<-.simple_sparse_array` <- 
function(x, ..., value) {

    if (inherits(value, c("simple_sparse_array", "simple_triplet_matrix"))) {
	if (prod(dim(value)) > slam_options("max_dense"))
	    stop("Replacement disabled.")
	value <- as.vector(value)
    }
    
    if (!length(value))
	stop("replacement has length zero")

    nd <- length(x$dim)
    pd <- prod(x$dim)

    .disable <- pd > slam_options("max_dense")

    na <- nargs()
    if (na == 3L && missing(..1))
	if (.disable)
	    stop("Empty subscripting disabled.")
	else
	    return(
		`[<-.simple_sparse_array`(x, seq_len(pd), value = value)
	    )
	    
    ## Single index subscripting.
    if (na == 3L) {
	I <- ..1
	## NOTE mapping to matrix is less inefficient (see below).
	I <- .stm_as_subscript(I, x$dim, TRUE)
	if (!is.numeric(unclass(I)))
	    stop("Only numeric / matrix subscripting is implemented.")
	if (!length(I))
	    return(x)
	## Missing values in subscripts.
	k <- is.na(I)
	if (any(k))
	    if (length(value) == 1L)
		I[k] <- 0L
	    else
		stop("NAs are not allowed in subscripted assignments")
	rm(k)
	## Vector subscripting.
	if (!is.matrix(I)) {
	    if (log2(pd) > .Machine$double.digits)
		stop("Vector subscripting disabled for this object.")
	    ## Map.
	    if (is.double(I))
		I <- trunc(I)
	    if (all(I >= 0L)) {
		## Remove zero subscripts.
		I <- I[I > 0L]
		if (!length(I))
		    return(x)
		if (any(I > pd))
		    stop("Extending is not implemented.")
	    } else {
		if (.disable)
		    stop("Negative subscripting disabled for this object.")
		if (all(I <= 0L)) {
		    ## NOTE this fails if NAs are introduced by 
		    ##	    coercion. 
		    I <- seq_len(pd)[I]
		} else
		    stop("only 0's may be mixed with negative subscripts")
	    }
	    ## Expand.
	    I <- arrayInd(I, .dim = x$dim)
	} else
	    ## NOTE as the other replacement rules are no less 
	    ##	    confusing we allow this, too.
	    if (ncol(I) != nd) {
		dim(I) <- NULL
		return(
		    `[<-.simple_sparse_array`(x, I, value = value)
		)
	    }
	    ## Map.
	    if (is.double(I))
		I <- trunc(I)
	    if (any(I < 0L))
		stop("negative values are not allowed in a matrix subscript")
	    ## Remove rows with zero subscripts.
	    I <- I[.Call(R_all_row, I > 0L, FALSE),, drop = FALSE]
	    if (!nrow(I))
		return(x)
	    ## NOTE NAs cannot be introduced by coercion as
	    ##      long as the bounds are integer.
	    if (any(I > rep(x$dim, each = nrow(I))))
		stop("subscript out of bounds")
	    storage.mode(I) <- "integer"
    } else {
	if (na != nd + 2L)
	    stop("incorrect number of dimensions")
        ## Get indices. 
        args <- vector("list", na - 2L)
	for (k in seq_along(args)) {
	    n <- as.name(sprintf("..%i", k))
	    if (!do.call(missing, list(n)))
		args[[k]] <- eval(n)
	    else
		if (.disable)
		    stop("Missing dimensions disabled for this object.")
		else
		    args[[k]] <- seq_len(x$dim[k])
	}
	if (!all(vapply(args, is.numeric, NA)))
	    stop("Only numeric subscripting is implemented.")
	## Replace negative subscripts.
	for (k in seq_along(args)) {
	    ## Map.
	    if (is.double(args[[k]]))
		args[[k]] <- trunc(args[[k]]) 
	    if (.disable) {
		if (any(args[[k]] < 0L))
		    stop("Negative subscripting disabled for this object.")
	    } else
		if (all(args[[k]] <= 0L))
		    args[[k]] <- seq_len(x$dim[k])[args[[k]]]
		else
		    if (!all(args[[k]] >= 0L))
			stop("only 0's may be mixed with negative subscripts")
	}
	## Expand.
	args <- matrix(
	    unlist(expand.grid(args), use.names = FALSE),
	    ncol = length(args)
	)
	return(
	    `[<-.simple_sparse_array`(x, args, value = value)
	)
    }

    ## Recycling.
    if (nrow(I) %% length(value))
	warning("number of items to replace is not a multiple of replacement length")
    V <- rep_len(value, nrow(I))

    ## Merge. 
    ##
    ## Emulates subsequent assignments of a sequence
    ## of replacement values with duplicate cell 
    ## indexes.
    I <- rbind(x$i, I)
    k <- .Call(R_match_matrix, I, NULL, NULL)
    k <- !duplicated(k[[1L]], fromLast = TRUE)
    I <- I[k,, drop = FALSE]
    V <- c(x$v, V)[k]

    ## Remove ZERO entries.
    k <- which(V == vector(typeof(V), 1L))
    if (length(k)) {
	k <- -k
	I <- I[k,, drop = FALSE]
	V <- V[k]
    }

    simple_sparse_array(
	v = V,
	i = I,
	dim = x$dim,
	dimnames = x$dimnames
    )
}

##
`[<-.simple_triplet_matrix` <- 
function(x, ..., value) {
    x <- `[<-.simple_sparse_array`(as.simple_sparse_array(x), ..., 
	value = value)
    if (inherits(x, "simple_sparse_array"))
	x <- as.simple_triplet_matrix(x)
    x
}

###

Try the slam package in your browser

Any scripts or data that you put into this service are public.

slam documentation built on Oct. 15, 2024, 9:09 a.m.