Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE
)
knitr::knit_hooks$set(
source = function(x, options) {
hook.r <- function(x, options) {
fence <- "```"
language <- tolower(options$engine)
if (language == 'node') language <- 'javascript'
if (!options$highlight) language <- 'text'
if(!is.null(options$foldcode)) {
paste0('\n\n', "<details><summary>Source</summary>\n", fence, language, '\n', x, fence, '\n\n', "</details>\n")
} else {
paste0('\n\n', fence, language, '\n', x, fence, '\n\n')
}
}
x <- knitr:::hilight_source(x, 'markdown', options)
hook.r(
paste(c(
x,
''
), collapse = '\n'),
options
)
}
)
Sys.setlocale("LC_TIME", "C")
## ----setup, echo = FALSE, message = FALSE-------------------------------------
library(smidm)
library(ggplot2)
library(dplyr)
library(hdrcde)
## ----get_serial_interval_density_statement------------------------------------
symptom_begin_date <- as.Date("2021-12-28")
max_serial_interval_days <- 20
shape_serial <- 2.154631545
rate_serial <- 0.377343528
serial_in_df_v1 <- get_serial_interval_density(symptom_begin_date,
max_serial_interval_days,
shape_serial,
rate_serial)
## ----get_serial_interval_density_result, echo = FALSE, message = FALSE--------
knitr::kable(serial_in_df_v1[100:109, ],
caption = "values 100 to 109 of resulting data frame")
## ----get_serial_interval_density_v2-------------------------------------------
symptom_begin_date <- as.Date("2021-12-28")
max_serial_interval_days <- 20
shape_serial <- 2 * 2.154631545
rate_serial <- 0.377343528
serial_in_df_v2 <- get_serial_interval_density(symptom_begin_date,
max_serial_interval_days,
shape_serial,
rate_serial)
## ----get_serial_interval_density_v2_table, echo = FALSE, message = FALSE------
knitr::kable(serial_in_df_v2[100:109, ],
caption = "values 100 to 109 of resulting data frame")
## ----.calculate_qstart_qend, foldcode = TRUE----------------------------------
.calculate_qstart_qend <- function(probability, df) {
hdr_df <- hdr(den = data.frame(x = 1:length(df$distribution), y = df$distribution),
p = probability * 100)$hdr
qstart <- (hdr_df[1, 1] - 1) / 24
qend <- (hdr_df[1, 2] - 1) / 24
return(list("qstart" = qstart, "qend" = qend))
}
## ----.shade_curve, foldcode = TRUE--------------------------------------------
.shade_curve <- function(df, qstart, qend, fill = "red", alpha = 0.4) {
subset_df <- df[floor(qstart * 24):ceiling(qend * 24), ]
geom_area(data = subset_df,
aes(x = x, y = y),
fill = fill,
color = NA,
alpha = alpha)
}
## ----parameters for visualization of get_infection_date_density, foldcode = TRUE----
symptom_begin_date <- as.Date("2021-12-28")
df <- get_serial_interval_density(symptom_begin_date,
max_serial_interval_days = 20,
shape_serial = 2.154631545,
rate_serial = 0.377343528)
period_80 <- .calculate_qstart_qend(0.8, df)
period_95 <- .calculate_qstart_qend(0.95, df)
df_2 <- get_serial_interval_density(symptom_begin_date,
max_serial_interval_days = 20,
shape_serial = 2 * 2.154631545,
rate_serial = 0.377343528)
symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_end <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_mid <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start,
symp_date_posixct_end, units = "hours")) / 2 * 3600
## ----visualization of get_infection_date_density, foldcode = TRUE-------------
g <- ggplot() +
scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d %b")) +
theme(axis.text.x = element_text(angle = 90)) +
# scale_x_continuous(breaks = x_tick,
# labels = x_label) +
# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1)) +
geom_path(aes(x = df$dates, y = df$distribution), color = "red", size = 1) +
geom_path(aes(x = df_2$dates, y = df_2$distribution), color = "purple", size = 1) +
.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
period_80$qstart,
period_80$qend) +
.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
period_95$qstart,
period_95$qend,
alpha = 0.2) +
geom_rect(data = data.frame(xmin = symp_date_posixct_start,
xmax = symp_date_posixct_end,
ymin = -Inf,
ymax = Inf),
aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax),
fill = "brown", alpha = 0.3) +
geom_label(aes(x = symp_date_posixct_mid, y = 0.9*max(df$distribution), label = "symptom\nonset"),
colour = "brown", fill = "white", size = 5, label.size = NA) +
ylab("probability") +
xlab("timeline") +
labs(color = 'Verteilung') +
# ggtitle("Visualization of get_infection_date_density ") +
theme(legend.position = "none", text = element_text(size = 16*5/5)) +
theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) +
theme(axis.title.x = element_text(colour = "black", face = "bold")) +
theme(axis.text.y = element_text(colour = "gray50")) +
theme(axis.title.y = element_text(colour = "gray50"))
g
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.