makeDTLZ2Function | R Documentation |
Builds and returns the multi-objective DTLZ2 test problem.
The DTLZ2 test problem is defined as follows:
Minimize f_1(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \cos(x_{M-1}\pi/2),
Minimize f_2(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \sin(x_{M-1}\pi/2),
Minimize f_3(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \sin(x_{M-2}\pi/2),
\vdots\\
Minimize f_{M-1}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \sin(x_2\pi/2),
Minimize f_{M}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \sin(x_1\pi/2),
with 0 \leq x_i \leq 1
, for i=1,2,\dots,n,
where g(\mathbf{x}_M) = \sum\limits_{x_i\in \mathbf{x}_M}(x_i-0.5)^2
makeDTLZ2Function(dimensions, n.objectives)
dimensions |
[ |
n.objectives |
[ |
[smoof_multi_objective_function
]
Note that in case of a bi-objective scenario (n.objectives = 2L
) DTLZ2 and DTLZ5 are identical.
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.