makeDTLZ3Function | R Documentation |
Builds and returns the multi-objective DTLZ3 test problem. The formula
is very similar to the formula of DTLZ2, but it uses the g
function
of DTLZ1, which introduces a lot of local Pareto-optimal fronts. Thus, this
problems is well suited to check the ability of an optimizer to converge
to the global Pareto-optimal front.
The DTLZ3 test problem is defined as follows:
Minimize f_1(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \cos(x_{M-1}\pi/2),
Minimize f_2(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \sin(x_{M-1}\pi/2),
Minimize f_3(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \sin(x_{M-2}\pi/2),
\vdots\\
Minimize f_{M-1}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \sin(x_2\pi/2),
Minimize f_{M}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \sin(x_1\pi/2),
with 0 \leq x_i \leq 1
, for i=1,2,\dots,n,
where g(\mathbf{x}_M) = 100 \left[|\mathbf{x}_M| + \sum\limits_{x_i \in \mathbf{x}_M} (x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5))\right]
makeDTLZ3Function(dimensions, n.objectives)
dimensions |
[ |
n.objectives |
[ |
[smoof_multi_objective_function
]
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.