makeDTLZ4Function | R Documentation |
Builds and returns the multi-objective DTLZ4 test problem. It is a slight
modification of the DTLZ2 problems by introducing the parameter \alpha
.
The parameter is used to map \mathbf{x}_i \rightarrow \mathbf{x}_i^{\alpha}
.
The DTLZ4 test problem is defined as follows:
Minimize f_1(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1^\alpha\pi/2) \cos(x_2^\alpha\pi/2) \cdots \cos(x_{M-2}^\alpha\pi/2) \cos(x_{M-1}^\alpha\pi/2),
Minimize f_2(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1^\alpha\pi/2) \cos(x_2^\alpha\pi/2) \cdots \cos(x_{M-2}^\alpha\pi/2) \sin(x_{M-1}^\alpha\pi/2),
Minimize f_3(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1^\alpha\pi/2) \cos(x_2^\alpha\pi/2) \cdots \sin(x_{M-2}^\alpha\pi/2),
\vdots\\
Minimize f_{M-1}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1^\alpha\pi/2) \sin(x_2^\alpha\pi/2),
Minimize f_{M}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \sin(x_1^\alpha\pi/2),
with 0 \leq x_i \leq 1
, for i=1,2,\dots,n,
where g(\mathbf{x}_M) = \sum\limits_{x_i\in \mathbf{x}_M}(x_i-0.5)^2
makeDTLZ4Function(dimensions, n.objectives, alpha = 100)
dimensions |
[ |
n.objectives |
[ |
alpha |
[ |
[smoof_multi_objective_function
]
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.