makeDTLZ5Function | R Documentation |
Builds and returns the multi-objective DTLZ5 test problem. This problem can be characterized by a disconnected Pareto-optimal front in the search space. This introduces a new challenge to evolutionary multi-objective optimizers, i.e., to maintain different subpopulations within the search space to cover the entire Pareto-optimal front.
The DTLZ5 test problem is defined as follows:
Minimize f_1(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(\theta_1\pi/2) \cos(\theta_2\pi/2) \cdots \cos(\theta_{M-2}\pi/2) \cos(\theta_{M-1}\pi/2),
Minimize f_2(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(\theta_1\pi/2) \cos(\theta_2\pi/2) \cdots \cos(\theta_{M-2}\pi/2) \sin(\theta_{M-1}\pi/2),
Minimize f_3(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(\theta_1\pi/2) \cos(\theta_2\pi/2) \cdots \sin(\theta_{M-2}\pi/2),
\vdots\\
Minimize f_{M-1}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(\theta_1\pi/2) \sin(\theta_2\pi/2),
Minimize f_{M}((1+g(\mathbf{x}_M)) \sin(\theta_1\pi/2),
with 0 \leq x_i \leq 1
, for i=1,2,\dots,n,
where \theta_i = \frac{\pi}{4(1+ g(\mathbf{x}_M))} (1+2g(\mathbf{x}_M)x_i),
for i = 2,3,\dots,(M-1)
and g(\mathbf{x}_M) = \sum\limits_{x_i\in\mathbf{x}_M}(x_i-0.5)^2
makeDTLZ5Function(dimensions, n.objectives)
dimensions |
[ |
n.objectives |
[ |
[smoof_multi_objective_function
]
This problem definition does not exist in the succeeding work of Deb et al. (K. Deb
and L. Thiele and M. Laumanns and E. Zitzler (2002). Scalable multi-objective optimization
test problems, Proceedings of the IEEE Congress on Evolutionary Computation, pp. 825-830).
Also, note that in case of a bi-objective scenario (n.objectives = 2L
) DTLZ2 and DTLZ5 are identical.
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.