Dixon-Price Function

Description

Dixon and Price defined the function

f(\mathbf{x}) = (\mathbf{x}_1 - 1)^2 + ∑_{i = 1}^{n} i (2\mathbf{x}_i^2 - \mathbf{x}_{i - 1})

subject to \mathbf{x}_i \in [-10, 10] for i = 1, …, n.

Usage

1

Arguments

dimensions

[integer(1)]
Size of corresponding parameter space.

Value

[smoof_single_objective_function]

References

L. C. W. Dixon, R. C. Price, The Truncated Newton Method for Sparse Unconstrained Optimisation Using Automatic Differentiation, Journal of Optimization Theory and Applications, vol. 60, no. 2, pp. 261-275, 1989.

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.