makeED1Function | R Documentation |
Builds and returns the multi-objective ED1 test problem.
The ED1 test problem is defined as follows:
Minimize f_j(\mathbf{x}) = \frac{1}{r(\mathbf{x}) + 1} \cdot \tilde{p}(\Theta (\mathbf{X}))
, for j = 1, \ldots, m
,
with \mathbf{x} = (x_1, \ldots, x_n)^T
, where 0 \leq x_i \leq 1
,
and \Theta = (\theta_1, \ldots, \theta_{m-1})
,
where 0 \le \theta_j \le \frac{\pi}{2}
, for i = 1, \ldots, n,
and j = 1, \ldots, m - 1
.
Moreover r(\mathbf{X}) = \sqrt{x_m^2 + \ldots, x_n^2}
,
\tilde{p}_1(\Theta) = \cos(\theta_1)^{2/\gamma}
,
\tilde{p}_j(\Theta) = \left( \sin(\theta_1) \cdot \ldots \cdot \sin(\theta_{j - 1}) \cdot \cos(\theta_j) \right)^{2/\gamma}
,
for 2 \le j \le m - 1
,
and \tilde{p}_m(\Theta) = \left( \sin(\theta_1) \cdot \ldots \cdot \sin(\theta_{m - 1}) \right)^{2/\gamma}
.
makeED1Function(dimensions, n.objectives, gamma = 2, theta)
dimensions |
[ |
n.objectives |
[ |
gamma |
[ |
theta |
[ |
[smoof_multi_objective_function
]
M. T. M. Emmerich and A. H. Deutz. Test Problems based on Lame Superspheres. Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), pp. 922-936, Springer, 2007.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.