makeHartmannFunction | R Documentation |
Unimodal single-objective test function with six local minima. The implementation is based on the mathematical formulation
f(x) = - \sum_{i=1}^4 \alpha_i \ exp \left(-\sum_{j=1}^6 A_{ij}(x_j-P_{ij})^2 \right)
, where
\alpha = (1.0, 1.2, 3.0, 3.2)^T, \\
A = \left( \begin{array}{rrrrrr}
10 & 3 & 17 & 3.50 & 1.7 & 8 \\
0.05 & 10 & 17 & 0.1 & 8 & 14 \\
3 & 3.5 & 1.7 & 10 & 17 & 8 \\
17 & 8 & 0.05 & 10 & 0.1 & 14
\end{array} \right), \\
P = 10^{-4} \cdot \left(\begin{array}{rrrrrr}
1312 & 1696 & 5569 & 124 & 8283 & 5886 \\
2329 & 4135 & 8307 & 3736 & 1004 & 9991 \\
2348 & 1451 & 3522 & 2883 & 3047 & 6650 \\
4047 & 8828 & 8732 & 5743 & 1091 & 381
\end{array} \right)
The function is restricted to six dimensions with \mathbf{x}_i \in [0,1], i = 1, \ldots, 6.
The function is not normalized in contrast to some benchmark applications in the literature.
makeHartmannFunction(dimensions)
dimensions |
[ |
[smoof_single_objective_function
]
Picheny, V., Wagner, T., & Ginsbourger, D. (2012). A benchmark of kriging-based infill criteria for noisy optimization.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.