makeZDT3Function | R Documentation |
Builds and returns the two-objective ZDT3 test problem. For m
objective it
is defined as follows
f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)
with
f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))
where
g(\mathbf{x}) = 1 + \frac{9}{m - 1} \sum_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)\sin(10\pi f_1(\mathbf{x}))
and \mathbf{x}_i \in [0,1], i = 1, \ldots, m
.
This function has some discontinuities in the Pareto-optimal front introduced
by the sine term in the h
function (see above). The front consists of
multiple convex parts.
makeZDT3Function(dimensions)
dimensions |
[ |
[smoof_multi_objective_function
]
E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.