makeZDT6Function | R Documentation |
Builds and returns the two-objective ZDT6 test problem. For m
objective it
is defined as follows
f(\mathbf{x}) = \left(f_1(\mathbf{x}), f_2(\mathbf{x})\right)
with
f_1(\mathbf{x}) = 1 - \exp(-4\mathbf{x}_1)\sin^6(6\pi\mathbf{x}_1), f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))
where
g(\mathbf{x}) = 1 + 9 \left(\frac{\sum_{i = 2}^{m}\mathbf{x}_i}{m - 1}\right)^{0.25}, h(f_1, g) = 1 - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)^2
and \mathbf{x}_i \in [0,1], i = 1, \ldots, m
.
This function introduced two difficulities (see reference):
1. the density of solutions decreases with the closeness to the Pareto-optimal front and
2. the Pareto-optimal solutions are nonuniformly distributed along the front.
makeZDT6Function(dimensions)
dimensions |
[ |
[smoof_multi_objective_function
]
E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.